US009284387B2 ## (12) United States Patent #### Crowther et al. # (10) Patent No.: US 9,284,387 B2 (45) Date of Patent: Mar. 15, 2016 #### (54) HYDROAMINATION OF ALDEHYDE-CONTAINING MACROMONOMERS (71) Applicant: ExxonMobil Chemical Patents Inc., Baytown, TX (US) (72) Inventors: **Donna J. Crowther**, Seabrook, TX (US); Man Kit Ng, Annandale, NJ (US); Patrick Brant, Seabrook, TX (US); Hong Cheng, Bridgewater, NJ (US) (73) Assignee: ExxonMobil Chemical Patents Inc., Baytown, TX (US) (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 306 days. (21) Appl. No.: 14/033,560 (22) Filed: Sep. 23, 2013 (65) **Prior Publication Data** US 2014/0088264 A1 Mar. 27, 2014 #### Related U.S. Application Data - (60) Provisional application No. 61/704,939, filed on Sep. 24, 2012. - (51) **Int. Cl. C08F 10/06** (2006.01) **C08F 8/32** (2006.01) - (52) **U.S. CI.** CPC . *C08F 10/06* (2013.01); *C08F 8/32* (2013.01); *C08F 2810/40* (2013.01) ## (56) References Cited #### U.S. PATENT DOCUMENTS | 3,378,590 | Α | 4/1968 | Usami et al. | |-----------|--------------|---------|-------------------| | 4,049,725 | A | 9/1977 | Gueant et al. | | 4,110,377 | A | 8/1978 | Clerici et al. | | 4,201,728 | A | 5/1980 | Hughes | | 4,320,237 | A | 3/1982 | Kaufhold et al. | | 4,633,021 | A | 12/1986 | Hanes | | 4,731,486 | \mathbf{A} | 3/1988 | Abatjoglou et al. | | 5,616,153 | Α | 4/1997 | Mike et al. | | 5,691,422 | Α | 11/1997 | Emert et al. | | 5,777,041 | Α | 7/1998 | Emert et al. | | 5,780,554 | Α | 7/1998 | Emert et al. | | 6,100,224 | Α | 8/2000 | Peiffer et al. | | 6,111,027 | Α | 8/2000 | Wright et al. | | 6,331,656 | В1 | 12/2001 | Blankertz et al. | | 6,969,735 | В1 | 11/2005 | Godwin | | 6,969,736 | В1 | 11/2005 | Godwin et al. | | 6,982,295 | B2 | 1/2006 | Godwin et al. | | 7,081,553 | В2 | 7/2006 | Clausi et al. | | 7,081,554 | B2 | 7/2006 | Garton et al. | | 7,148,388 | B2 | 12/2006 | Beadle et al. | | 7,183,359 | B2 | 2/2007 | Hanna et al. | | 7,186,874 | B2 | 3/2007 | Dakka et al. | | 7,220,884 | B2 | 5/2007 | Briggs et al. | | | | | | | 7,395,850 | B2 | 7/2008 | Chino et al. | |--------------|-----|---------|----------------------| | 7,405,329 | B2 | 7/2008 | Beadle et al. | | 7,422,904 | B2 | 9/2008 | Garton et al. | | 7,507,868 | B2 | 3/2009 | Duncan et al. | | 7,541,507 | B2 | 6/2009 | Dakka et al. | | 7,586,017 | B2 | 9/2009 | Van Driessche et al. | | 7,700,814 | B2 | 4/2010 | Garton et al. | | 7,851,221 | B2 | 12/2010 | Garton et al. | | 8,143,459 | B2 | 3/2012 | Van Driessche et al. | | 8,163,825 | B2 | 4/2012 | Colle et al. | | 8,178,730 | B2 | 5/2012 | Caers et al. | | 8,247,618 | B2 | 8/2012 | Buturla et al. | | 8,283,419 | B2 | 10/2012 | Hagadorn et al. | | 8,372,930 | B2 | 2/2013 | Brant et al. | | 8,399,725 | B2 | 3/2013 | Brant et al. | | 2004/0267051 | A1* | 12/2004 | Boerner C07C 209/28 | | | | | 564/398 | | 2009/0186985 | A1 | 7/2009 | Kuhlman et al. | | 2010/0292422 | A1 | 11/2010 | Rath et al. | | 2012/0245276 | A1 | 9/2012 | Hagadorn et al. | #### FOREIGN PATENT DOCUMENTS JP 08-109188 5/2008 WO 94/29018 12/1994 (Continued) OTHER PUBLICATIONS Boerner et al., US 2004/0267051; Marks et al., Versatile Pathways for In Situ Polyolefin Functionalization with Heteroatoms: Catalytic Chain Transfer, Angew. Chem. Int. Ed. 2008, 47, 2006-2025.* Hartwig et al., Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines, J. Am. Chem. Soc. 2007, 129 6690-6691.* U.S. Appl. No. 14/031,437, filed Sep. 19, 2013, Crowther, et al. Amin, Smruti B., et al., "Versatile Pathways for In Situ Polyolefin Functionalization with Heteroatoms: Catalytic Chain Transfer", Angew. Chem. Int. Ed., 2008, 47, pp. 2006-2025. Chung, T.C., "Synthesis of functional polyolefin copolymers with graft and block structures", Prog. Polym. Sci., 27, 2002, pp. 39-85. Clerici, Mario G., et al., "Catalytic C-Alkylation of Secondary Amines with Alkenes", Synthesis Comm., 1980, 4, pp. 305-306. Eisenberger, Patrick, et al., "Tantalum-Amindate Complexes for the Hydroaminoalkylation of Secondary Amines: Enhanced Substrate Scope and Enantioselective Chiral Amine Synthesis", Angew. Chem. Int. Ed., 2009, 48, pp. 8361-8365. (Continued) Primary Examiner — Robert Harlan (74) Attorney, Agent, or Firm — Catherine L. Bell (57) ABSTRACT This invention relates to a polyolefin composition comprising one or more of the following formulae: wherein the PO is the residual portion of a vinyl terminated macromonomer (VTM) having had a terminal unsaturated carbon of an allylic chain and a vinyl carbon adjacent to the terminal unsaturated carbon; R_1 is a hydrogen atom, an aryl group, or an alkyl group, wherein the aryl group or alkyl group can include one or more heteroatoms, an alkyl or aryl amino group, a polyalkylamino group; wherein the VTM is a vinyl terminated macromonomer. #### 12 Claims, 2 Drawing Sheets #### (56) References Cited #### FOREIGN PATENT DOCUMENTS | WO | 96/22266 | 7/1996 | |----|-------------|--------| | WO | 99/33885 | 7/1999 | | WO | 2005/058787 | 6/2005 | #### OTHER PUBLICATIONS Gnanamgari, D., et al., "Transfer Hydrogenation of Imines and Alkenes and Direct Reductive Amination of Aldehydes Catalyzed by Triazole-Derived Iridium(I) Carbene Complexes", Organometallics, Jan. 26, 2007, vol. 26, pp. 1226-1230. Herzon, Seth B., et al., "Hydroaminoalkylation of Unactivated Olefins with Dialkylamines", J. Am. Chem. Soc., 2008, 130, pp. 14940-14941. Herzon, Seth B., et al., "Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines", J. Am. Chem. Soc., 2007, 129, pp. 6690-6691. Lazzaroni, Raffaello, et al., "High linear regioselectivity in the rhodium-catalyzed hydro(deuterio)formylation of 3,4,4- trimethylpent-1-ene: the role of β -hydride elimination", Journal of Molecular Catalysis A: Chemical, 356, 2012, pp. 1-13. Lopez, Ricardo Godoy, et al., "Synthesis of well-defined polymer architectures by successive catalytic olefin polymerization and living/controlled polymerization reactions", Prog. Polym. Sci., 32, 2007, pp. 419-454. Kubiak, Raphael, et al., "Titanium-Catalyzed Hydroaminoalkylation of Alkenes by C—H Bond Activation at sp3 Centers in the α -Position to a Nitrogen Atom", Angew. Chem. Int. Ed., 2009, 48, pp. 1153-1156. Mills, Patrick L., et al., "Synthesis, Characterization, and Kinetics of Functionalized Polybutadiene Using a Homogeneous Rhodium Hydroformylation Catalyst", Ind. Eng. Chem. Res., 1990, 29, pp. 1443-1454. Roesky, Peter W., "Catalytic Hydroaminoalkylation", Angew. Chem. Int. Ed., 2009, 48, 4892-4894. Segawa, Yasutomo, "Catalytic Hydroaminoalkylation of Alkenes", Yuki Gosei Kagaku Kyokaishi, 2009, 67(8), pp. 843-844. Seayed, Abdul Majeed, et al., "Hydroaminomethylation of olefins using a rhodium carbine catalyst", Tetrahedron Letters, 44, 2003, pp. 1679-1683. * cited by examiner Figure 1 Figure 2 ## HYDROAMINATION OF ALDEHYDE-CONTAINING MACROMONOMERS #### CROSS-REFERENCE TO RELATED APPLICATIONS This application claims priority to and the benefit of U.S. Provisional Application No. 61/704,939, filed Sep. 24, 2012, the disclosure of which is incorporated herein by reference in 10 its entirety. This application also relates to U.S. Ser. No. 61/704,639, filed Sep. 24, 2012 entitled "CATALYTIC HYDROFORMYLATION OF VINYL TERMINATED POLYOLEFINS". #### FIELD OF THE INVENTION This invention relates to functionalization of vinyl terminated polyolefins by hydroformylation followed by hydroamination. #### BACKGROUND OF THE INVENTION Methods for the production of polyolefins with end-functionalized groups are typically multi-step processes that often 25 ing one or more of the following formulae: create unwanted by-products and waste of reactants and energy. For reviews of methods to form end-functionalized polyolefins, see: (a) S. B. Amin and T. J. Marks, Angewandte Chemie, International Edition, 2008, 47, pp. 2006-2025; (b) T. C. Chung *Prog. Polym. Sci.* 2002, 27, pp. 39-85; (c) R. G. 30 Lopez, F. D'Agosto, C. Boisson *Prog. Polym. Sci.* 2007, 32, pp. 419-454. A process with a reduced number of steps, even one step, would be desirable. U.S. Pat. No. 4,110,377 discloses secondary aliphatic amines alkylated with alpha-olefins, such as ethylene, propy- 35 lene, hexene, and undecene. Likewise, several literature references disclose hydroaminoalkylation of olefins using various catalysts (see J. Am. Chem. Soc. 2008, 130, pp. 14940-14941; J. Am. Chem. Soc. 2007, 129, pp. 6690-6691; Angewandte Chemie, International Edition, 2009, 48, pp. 40 wherein the VTM is one or more of: 8361-8365; Angew. Chem. Int. Ed. 2009, 48, pp. 4892-4894; Yuki Gosei Kagaku Kyokaishi (2009), 67(8), pp. 843-844; Angewandte Chemie, International Edition (2009), 48(6), pp. 1153-1156; Tetrahedron Letters (2003), 44(8), pp. 1679-1683; Synthesis (1980), (4), pp. 305-306). Corey discloses 45 low molecular weight olefins treated with hydrosilanes in the presence of Cp₂MCl₂ and n-BuLi to prepare low molecular weight hydrosilylated products. None of the above references however disclose functionalization of polyolefins, particularly polyolefins having Mn's 50 over 500 g/mol having large amounts of vinyl terminal groups. U.S. Pat. No. 8,399,725 discloses certain vinyl terminated polymers that are functionalized, optionally, for use in lubricant applications. U.S. Pat. No. 8,372,930 discloses certain vinyl terminated polymers that are functionalized in U.S. Pat. No. 8,399,725. U.S. Pat. No. 8,283,419 discloses a process to functionalize propylene homo- or copolymer comprising contacting an alkene metathesis catalyst with a heteroatom containing alk- 60 ene and a propylene homo- or copolymer having terminal unsaturation. Additional references of interest include U.S. Pat. Nos. 6,331,656; 5,777,041; 6,111,027; 7,183,359; 6,100,224; and 5,616,153. Thus, there is a need to develop a means to provide functionalized polyolefins (particularly end-functionalized) by 2 efficient
reactions, particularly reactions with good conversion, preferably under mild reaction conditions with a minimal number of steps, preferably one or two steps. The instant invention's use of hydroformylation and hydroamination to introduce a carbon group and an amine functionality is both a commercially economical and an "atom-economical" route to end-functionalized polyolefins. End-functionalized polyolefins that feature a chemically reactive or polar end group are of interest for use in a broad range of applications as compatibilizers, tie-layer modifiers, surfactants, adhesives, and surface modifiers. Herein is described a novel method for their production by the reaction of vinyl-terminated polyolefins with carbon monoxide followed by hydroamination. This method is useful for a range 15 of vinyl terminated polyolefins, including isotactic polypropylene (iPP), atactic polypropylene (aPP), ethylene propylene copolymer (EP), polyethylene (PE), and particularly propylene copolymers with larger alpha-olefin comonomers such as butene, hexene octene, etc. The vinyl terminated 20 polyolefin useful herein can be linear or branched. #### SUMMARY OF THE INVENTION This invention relates to a polyolefin composition compris- wherein the PO is the residual portion of a vinyl terminated macromonomer (VTM) having had a terminal unsaturated carbon of an allylic chain and a vinyl carbon adjacent to the terminal unsaturated carbon; R₁ is a hydrogen atom, an aryl group, or an alkyl group, wherein the aryl group or alkyl group can include one or more heteroatoms, an alkyl or aryl amino group, a polyalkylamino group; - (i) a vinyl terminated polymer having greater than 30% allyl chain ends with an Mn of greater than 10,000; - (ii) a vinyl terminated polymer having an Mn of at least 160 g/mol, preferably at least 200 g/mol (measured by ¹H NMR) comprising of one or more C₄ to C₄₀ higher olefin derived units, where the higher olefin polymer comprises substantially no propylene derived units; and wherein the higher olefin polymer has at least 5% allyl chain ends; - (iii) a copolymer having an Mn of 300 g/mol or more (measured by ¹H NMR) comprising (a) from about 20 mol % to about 99.9 mol % of at least one C₅ to C₄₀ higher olefin, and (b) from about 0.1 mol % to about 80 mol % of propylene, wherein the higher olefin copolymer has at least 40% allyl chain ends; - 55 (iv) a copolymer having an Mn of 300 g/mol or more (measured by ¹H NMR), and comprises (a) from about 80 mol % to about 99.9 mol % of at least one C₄ olefin, (b) from about 0.1 mol % to about 20 mol % of propylene; and wherein the vinyl terminated macromonomer has at least 40% allyl chain ends relative to total unsaturation; - (v) a co-oligomer having an Mn of 300 g/mol to 30,000 g/mol (measured by ¹H NMR) comprising 10 mol % to 90 mol % propylene and 10 mol % to 90 mol % of ethylene, wherein the co-oligomer has at least X % allyl chain ends (relative to total unsaturations), where: 1) X=(-0.94*(mol % ethylene incorporated)+100), when 10 mol % to 60 mol % ethylene is present in the co-oligomer, 2) X=45, when greater than 60 mol % and less than 70 mol % ethylene is present in the co-oligomer, and 3) X=(1.83*(mol % ethylene incorporated)-83), when 70 mol % to 90 mol % ethylene is present in the co-oligomer; (vi) a propylene co-oligomer, comprising more than 90 mol % 5 propylene and less than 10 mol % ethylene wherein the co-oligomer has: at least 93% allyl chain ends, a number average molecular weight (Mn) of about 500 g/mol to about 20,000 g/mol, an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.35:1.0, less than 100 ppm aluminum, and/or less than 250 regio defects per 10,000 monomer units; (vii) a propylene co-oligomer, comprising: at least 50 mol % propylene and from 10 mol % to 50 mol % ethylene, wherein the co-oligomer has: at least 90% allyl chain ends, 15 an Mn of about 150 g/mol to about 20,000 g/mol, preferably 10,000 g/mol, and an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.2:1.0, wherein monomers having four or more carbon atoms are present at from 0 mol % to 3 mol %: (viii) a propylene co-oligomer, comprising: at least 50 mol % propylene, from 0.1 mol % to 45 mol % ethylene, and from 0.1 mol % to 5 mol % C₄ to C₁₂ olefin, wherein the co-oligomer has: at least 90% allyl chain ends, an Mn of about 150 g/mol to about 10,000 g/mol, and an isobutyl chain end 25 to allylic vinyl group ratio of 0.8:1 to 1.35:1.0; (ix) a propylene co-oligomer, comprising: at least 50 mol % propylene, from 0.1 mol % to 45 mol % ethylene, and from 0.1 mol % to 5 mol % diene, wherein the co-oligomer has: at least 90% allyl chain ends, an Mn of about 150 g/mol to 30 about 10,000 g/mol, and an isobutyl chain end to allylic vinyl group ratio of 0.7:1 to 1.35:1.0; (x) a homo-oligomer, comprising propylene, wherein the cooligomer has: at least 93% allyl chain ends, an Mn of about 500 g/mol to about 70,000 g/mol, alternately to about 35 20,000 g/mol, an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.2:1.0, and less than 1400 ppm aluminum; (xi) vinyl terminated polyethylene having: (a) at least 60% allyl chain ends; (b) a molecular weight distribution of less than or equal to 4.0; (c) a g'(vis) of greater than 0.95; and 40 (d) an Mn (¹HNMR) of at least 20,000 g/mol; (xii) vinyl terminated polyethylene having: (a) at least 50% allyl chain ends; (b) a molecular weight distribution of less than or equal to 4.0; (c) a g'(vis) of 0.95 or less; (d) an Mn (¹HNMR) of at least 7,000 g/mol; and (e) a Mn (GPC)/Mn 45 (¹HNMR) in the range of from about 0.8 to about 1.2; and (xiii) a vinyl terminated polymer having greater than 5% allyl chain ends. Hydroformylation is a method for introducing an aldehyde functionality while saturating the double bond. A mixture of 50 the normal- and iso-aldehydes are often co-produced. When an amine is added to an aldehyde, an imine intermediate and water (a by-product that is preferably removed) are formed. The imine intermediate may be isolated if desired but can be more conveniently reduced to the more stable C—N single 55 bond by a reducing agent (such as a hydride source). The hydride source can be an organometallic metal hydride, hydrogen or any other hydrogen donor that can reduce an imine (C—N) bond. The present invention discloses a method of functionalizing high vinyl content terminated macromonomers by hydroformylation followed by hydroamination (also commonly known as reductive amination) step to produce mono, di, tri-polyamine containing polyolefins. The multiplicity of amino groups confers high polarity to the polyolefin that are 65 structurally distinct from the conventional reaction product between polyisobutylene succinic anhydride (PIB-SA) and 4 polyamine (PAM), commonly known as PIB-SA-PAM. Another feature of the present invention is that the polyamine functionalized polyolefin does not contain any unsaturation in the polyolefin backbone. The stoichiometry of polyamine to aldehyde can result in two or more VTM's attached per polyamine #### BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a $^1\mathrm{H}$ NMR of a reaction product formed in Example 1. FIG. 2 is a ^{1}H NMR of a reaction product formed in Example 3. #### **DEFINITIONS** In the structures depicted throughout this specification and the claims, a solid line indicates a bond, and an arrow indicates that the bond may be dative. As used herein, the new notation for the Periodic Table Groups is used as described in *Chemical and Engineering News*, 63(5), p. 27 (1985). The term "substituted" means that a hydrogen group has been replaced with a hydrocarbyl group, a heteroatom, or a heteroatom containing group. For example, methyl cyclopentadiene (Cp) is a Cp group substituted with a methyl group and ethyl alcohol is an ethyl group substituted with an —OH group. The terms "hydrocarbyl radical," "hydrocarbyl," and "hydrocarbyl group" are used interchangeably throughout this document. Likewise, the terms "functional group," "group," and "substituent" are also used interchangeably in this document. For purposes of this disclosure, "hydrocarbyl radical" is defined to be C_1 to C_{20} radicals, that may be linear, branched, or cyclic (aromatic or non-aromatic); and may include substituted hydrocarbyl radicals as defined herein. In an embodiment, a functional group may comprise a hydrocarbyl radical, a substituted hydrocarbyl radical, or a combination thereof. Substituted hydrocarbyl radicals are radicals in which at least one hydrogen atom has been substituted with a heteroatom or heteroatom containing group, or with atoms from Groups 13, 14, 15, 16, and 17 of the Periodic Table of Elements, or a combination thereof, or with at least one functional group, such as halogen (Cl, Br, I, F), NR*2, OR*, SeR*, TeR*, PR*2, AsR*2, SbR*2, SR*, BR*2, SiR*3, GeR*3, SnR*3, PbR*3, and the like or where at least one heteroatom has been inserted within the hydrocarbyl radical, such as halogen (Cl, Br, I, F), O, S, Se, Te, NR*, PR*, AsR*, SbR*, BR*, SiR*2, GeR*2, SnR*2, PbR*2, and the like, where R* is, independently, hydrogen or a hydrocarbyl radical, or any combination thereof. In an embodiment, the hydrocarbyl radical is independently selected from methyl, ethyl, ethenyl, and isomers of propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, heneicosyl, docosyl, tricosyl, tetracosyl, pentacosyl, hexacosyl, heptacosyl, octacosyl, nonacosyl, triacontyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, octadecenyl, itricosenyl, decosenyl, pentacosenyl, hexacosenyl, heptacosenyl, pentacosenyl, pentacosenyl, hexacosenyl, heptacosenyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, decynyl, undecynyl, dodecynyl, tridecynyl, tetradecynyl, pentadecynyl,
heptadecynyl, heptadecynyl, heptadecynyl, heptadecynyl, heptadecynyl, octadecynyl, nonadecynyl, eicosynyl, heneicosynyl, docosynyl, tricosynyl, tetracosynyl, pentacosynyl, hexacosynyl, heptacosynyl, octacosynyl, nonacosynyl, and triacontynyl. Also included are isomers of saturated, partially unsaturated, and aromatic cyclic structures wherein the radical may addi- 5 tionally be subjected to the types of substitutions described above. Examples include phenyl, methylphenyl, benzyl, methylbenzyl, naphthyl, cyclohexyl, cyclohexenyl, methylcyclohexyl, and the like. For this disclosure, when a radical is listed, it indicates that radical type and all other radicals 10 formed when that radical type is subjected to the substitutions defined above. Alkyl, alkenyl, and alkynyl radicals listed include all isomers including, where appropriate, cyclic isomers, for example, butyl includes n-butyl, 2-methylpropyl, 1-methylpropyl, tert-butyl, and cyclobutyl (and analogous 15 substituted cyclopropyls); pentyl includes n-pentyl, cyclopentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1-ethylpropyl, and neopentyl (analogous substituted cyclobutyls and cyclopropyls); and butenyl includes E and Z forms of 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 1-me- 20 thyl-2-propenyl, 2-methyl-1-propenyl, and 2-methyl-2-propenyl (cyclobutenyls and cyclopropenyls). Cyclic compounds having substitutions include all isomer forms, for example, methylphenyl would include ortho-methylphenyl, meta-methylphenyl, and para-methylphenyl; dimethylphenyl 25 would include 2,3-dimethylphenyl, 2,4-dimethylphenyl, 2,5dimethylphenyl, 2,6-diphenylmethyl, 3,4-dimethylphenyl, and 3,5-dimethylphenyl. An "olefin," alternatively referred to as "alkene," is a linear, branched, or cyclic compound of carbon and hydrogen hav- 30 ing at least one double bond. For purposes of this specification and the claims appended thereto, when a polymer or copolymer is referred to as comprising an olefin, including, but not limited to, ethylene, propylene, and butene, the olefin present in such polymer or copolymer is the polymerized 35 form of the olefin. For example, when a copolymer is said to have an "ethylene" content of 35 wt % to 55 wt %, it is understood that the mer unit in the copolymer is derived from ethylene in the polymerization reaction and said derived units are present at 35 wt % to 55 wt %, based upon the weight of 40 the copolymer. A "polymer" has two or more of the same or different mer units. A "homopolymer" is a polymer having mer units that are the same. A "copolymer" is a polymer having two or more mer units that are different from each other. A "terpolymer" is a polymer having three mer units that 45 are different from each other. "Different" as used to refer to mer units indicates that the mer units differ from each other by at least one atom or are different isomerically. Accordingly, the definition of copolymer, as used herein, includes terpolymers and the like. An oligomer (or "co-oligomer" or "homo- 50 oligomer") is a polymer having a low molecular weight. In some embodiments, an oligomer has an Mn of 21,000 g/mol or less (e.g., 2,500 g/mol or less); in other embodiments, an oligomer has a low number of mer units (such as 75 mer units An "alpha-olefin" is an olefin having a double bond at the alpha (or 1-) position. A "linear alpha-olefin" or "LAO" is an olefin with a double bond at the alpha position and a linear hydrocarbon chain. A "polyalphaolefin" or "PAO" is a polymer having two or more alpha-olefin units. For the purposes 60 of this disclosure, the term " α -olefin" includes C_2 - C_{20} olefins. Non-limiting examples of α -olefins include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 65 1-heptadecene, 1-octadecene, 1-nonadecene, 1-tetracosene, 1-tetrac 6 1-pentacosene, 1-hexacosene, 1-heptacosene, 1-octacosene, 1-nonacosene, 1-triacontene, 4-methyl-1-pentene, 3-methyl-1-pentene, 5-methyl-1-nonene, 3,5,5-trimethyl-1-hexene, vinylcyclohexane, and vinylnorbornane. Non-limiting examples of cyclic olefins and diolefins include cyclopropene, cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclooctene, cyclononene, cyclodecene, norbornene, 4-methylnorbornene, 2-methylcyclopentene, 4-methylcyclopentene, vinylcyclohexane, norbornadiene, dicyclopentadiene, 5-ethylidene-2-norbornene, vinylcyclohexene, 5-vinyl-2-norbornene, 1,3-divinylcyclopentane, 1,2divinylcyclohexane, 1,3-divinylcyclohexane, 1,4divinylcyclohexane, 1,5-divinylcyclooctane, 1-allyl-4vinylcyclohexane, 1,4-diallylcyclohexane, 1-allyl-5vinylcyclooctane, and 1,5-diallylcyclooctane. For purposes herein, a polymer or polymeric chain comprises a concatenation of carbon atoms bonded to each other in a linear or a branched chain, which is referred to herein as the backbone of the polymer (e.g., polyethylene). The polymeric chain may further comprise various pendent groups attached to the polymer backbone which were present on the monomers from which the polymer was produced. These pendent groups are not to be confused with branching of the polymer backbone, the difference between pendent side chains and both short and long chain branching being readily understood by one of skill in the art. The terms "catalyst" and "catalyst compound" are defined to mean a compound capable of initiating catalysis. In the description herein, the catalyst may be described as a catalyst precursor, a pre-catalyst compound, or a transition metal compound (for example, a metallocene compound), and these terms are used interchangeably. A catalyst compound may be used by itself to initiate catalysis or may be used in combination with an activator to initiate catalysis. When the catalyst compound is combined with an activator to initiate catalysis, the catalyst compound is often referred to as a pre-catalyst or catalyst precursor. A "catalyst system" is a combination of at least one catalyst compound, an optional activator, an optional co-activator, and an optional support material, where the system can polymerize monomers to polymer. For the purposes of this invention and the claims thereto, when catalyst systems are described as comprising neutral stable forms of the components, it is well understood by one of ordinary skill in the art, that the ionic form of the component is the form that reacts with the monomers to produce polymers. An "anionic ligand" is a negatively charged ligand which donates one or more pairs of electrons to a metal ion. A "neutral donor ligand" is a neutrally charged ligand which donates one or more pairs of electrons to a metal ion. A "scavenger" is a compound that is typically added to facilitate polymerization by scavenging impurities. Some scavengers may also act as activators and may be referred to as co-activators. A co-activator, that is not a scavenger, may also be used in conjunction with an activator in order to form an active catalyst. In some embodiments, a co-activator can be pre-mixed with the catalyst compound to form an alkylated catalyst compound, also referred to as an alkylated invention compound. A propylene polymer is a polymer having at least 50 mol % of propylene. As used herein, Mn is number average molecular weight as determined by proton nuclear magnetic resonance spectroscopy (¹H NMR) where the data is collected at 120° C. in a 5 mm probe using a spectrometer with a ¹H frequency of at least 400 MHz. Data is recorded using a maximum pulse width of 45°, 8 seconds between pulses and signal averaging 120 transients. Unless stated otherwise, Mw is weight average molecular weight as determined by gel permeation chromatography (GPC), Mz is z average molecular weight as determined by GPC as described in the VINYL TERMINATED MACROMONOMERS section below, wt % is weight percent, and mol % is mole percent. Molecular weight distribution (MWD) is defined to be Mw (GPC) 5 divided by Mn (GPC). Unless otherwise noted, all molecular weight units, e.g., Mw, Mn, Mz, are g/mol. The following abbreviations may be used through this specification: Me is methyl, Ph is phenyl, Et is ethyl, Pr is propyl, iPr is isopropyl, n-Pr is normal propyl, Bu is butyl, iBu 10 is isobutyl, tBu is tertiary butyl, p-tBu is para-tertiary butyl, nBu is normal butyl, TMS is trimethylsilyl, TIBAL is triisobutylaluminum, TNOAL is triisobutyl n-octylaluminum, MAO is methylalumoxane, pMe is para-methyl, Ar* is 2,6diisopropylaryl, Bz is benzyl, THF is tetrahydrofuran. #### DETAILED DESCRIPTION OF THE INVENTION Amorphous polyolefin backbones with polyamine (PAM) functionalization, such as the reaction products between 20 polyisobutylene succinic anhydride (PIB-SA) and polyamine (PAM), commonly known as PIB-SA-PAM, can serve as dispersants, corrosion inhibitors, detergents in lubricating oil, fuel and oil (gas) transportation pipeline applications, etc. The present invention provides vinyl-terminated mac- 25 romonomers (VTM) that have been hydroformylated to the aldehyde-functionalized macromonomers which can then be hydroaminated in a one-pot reaction to yield high-purity alkyl diamine (e.g., ethylenediamine) and polyamine-functionalized polyolefin materials. These materials are expected to 30 exhibit performance advantages over commercial polyisobutylene containing materials, such as Jeffamines®. Hydroformylation of simple low-molecular weight olefins is a method for introducing an aldehyde functionality while saturating the double bond. Usually a mixture of the normal- 35 and iso-aldehydes are co-produced. Subsequent conversion of the aldehyde group to other functionalities by either oxidation or reduction method are also known. When a primary amine is added to an aldehyde usually an imine intermediate formed. The imine intermediate may be isolated if desired but can be more conveniently reduced to the more stable C-N single bond by a reducing agent (such as
a hydride source). The hydride source can be an organometallic metal hydride, hydrogen or any other hydrogen donor that can reduce an 45 imine (C=N) bond. Commercially, the hydroformylation/ amination (CO/H₂/NH₃, Co or Rh catalyst) of polyisobutylene (PIB) that contain substantial vinylidene content (e.g., greater than 50%) in the polyolefin chain end has been developed by BASF and others to produce polyisobutylene 50 monoamine for use as detergent in fuel application. However, this type of reaction has not been applied to large macromonomer, such as VTMs possibly due to the perceived inactivity of such large molecules. Vinyls are preferentially hydroformylated by rhodium/transition metal catalysts. The present invention discloses the method of functionalizing high vinyl content terminated macromonomers by hydroformylation followed by hydroamination (also commonly known as reductive amination) step to produce polyamine containing polyolefins. The multiplicity of amino 60 groups confers high polarity to the polyolefin that are structurally distinct from the conventional reaction product between polyisobutylene succinic anhydride (PIB-SA) and polyamine (PAM), commonly known as PIB-SA-PAM. Another feature of the present invention is that the polyamine 65 functionalized polyolefin does not contain any unsaturation in the polyolefin backbone. 8 The number of polyolefin chains that can be attached to a given polyamine molecule can vary from one to hundreds, (e.g., 2, 4, 10, 20, 40, 100), depending on the charge ratio of the aldehyde-functionalized macromonomer to the polyamine (and available amine sites). The functionalized polyolefin chain can vary greatly in molecular weights, polydispersity, tacticity, co-monomer composition and incorporated functionality. In a preferred embodiment the invention relates to a polyolefin composition comprising one or more of the following $$\begin{array}{cccc} & NR_1 & \text{or} & HC = NR_1 \\ \parallel & & \parallel & & \parallel \\ PO - CH_2 - CH & PO - CH - CH_2 \end{array}$$ wherein the PO is the residual portion of a vinyl terminated macromonomer (VTM) having had a terminal unsaturated carbon of an allylic chain and a vinyl carbon adjacent to the terminal unsaturated carbon; R₁ is a hydrogen atom, an aryl group, or an alkyl group, wherein the aryl group or alkyl group can include one or more heteroatoms, an alkyl or aryl amino group, a polyalkylamino group, preferably R₁ is H, —CH₂CH₂NH₂, —CH₂CH₂NHCH₂CH₂OH, C_6H_5 -CH₂CH₂NHCH₂CH₂NH₂, —CH₂CH₂(NHCH₂CH₂)₂ NH_2 , — $CH_2CH_2(NHCH_2CH_2)_3NH_2$, and wherein the VTM is one or more of the VTMs described herein. In a preferred embodiment, the invention relates to a polyolefin composition comprising one or more of the following formulae: and water (a by-product that is preferably removed) are 40 wherein the PO is the residual portion of a vinyl terminated macromonomer (VTM) having had a terminal unsaturated carbon of an allylic chain and a vinyl carbon adjacent to the terminal unsaturated carbon; R₁ is a hydrogen atom, an aryl group, or an alkyl group, wherein the aryl group or alkyl group can include one or more heteroatoms, an alkyl or aryl amino group, a polyalkylamino group, preferably R₁ is H, H(HCl), C₆H₅, CH₂CH₂NH₂ CH₂CH₂NHCH₂CH₂OH, -CH₂CH₂NHCH₂CH₂NH₂, -CH₂CH₂(NHCH₂CH₂)₂ NH₂, —CH₂CH₂(NHCH₂CH₂)₃NH₂, and wherein the VTM is one or more of the VTMs described > In a preferred embodiment, the invention relates to a polyolefin composition comprising one or more of the following 9 wherein the P_1O and OP_2 , each independently, are residual portions of vinyl terminated macromonomer (VTMs) having had a terminal unsaturated carbon of an allylic chain and a vinyl carbon adjacent to the terminal unsaturated carbon; R_1 and R_2 , each independently, are one of a hydrogen atom, an aryl group, or an alkyl group, wherein the aryl group or alkyl group can include one or more heteroatoms, an alkyl or aryl amino group, a polyalkylamino group or $-CH_2CH_2P_1O$, $-CH_2CH_2PO_2$, $-CH_2-CH_2(CH_3)-P_1O$, or $-CH_2-CH_2(CH_3)-PO_2$, preferably R_1 and R_2 are selected from H, Me, Ph, Et, iPr; X is an alkylidene group or an arylene group, wherein one or more carbon atoms can include one or more heteroatoms; wherein each VTM is one or more of the VTMs described herein. Preferably X is represented by the formula: $$\frac{\left(\operatorname{CH}_{2}\right)_{n}-\operatorname{R}_{3}}{\left(\operatorname{CH}_{2}\right)_{m}-\operatorname{N}_{x}} \quad \text{or} \quad \\ \frac{\left(\operatorname{CH}_{2}\right)_{n}-\operatorname{O}-\left(\operatorname{CH}_{2}\right)_{m}\right)_{x}}{\left(\operatorname{CH}_{2}\right)_{m}} \quad \text{or} \quad \\ \frac{\left(\operatorname{CH}_{2}\right)_{m}-\operatorname{O}-\left(\operatorname{CH}_{2}\right)_{m}}{\left(\operatorname{CH}_{2}\right)_{m}} \quad \text{or} \quad \\ \frac{\left(\operatorname{CH}_{2}\right)_{m}-\operatorname{O}-\left(\operatorname{CH}_{2}\right)_{m}}{\left(\operatorname{CH}_{2}\right)_{m}} \frac{\left(\operatorname{CH}_{2}\right)_{m}-\operatorname{CH}_{2}}{\left(\operatorname{CH}_{2}\right)_{m}} \quad \\ \frac{\left(\operatorname{CH}_{2}\right)_{m}-\operatorname{CH}_{2}}{\left(\operatorname{CH}_{2}\right)_{m}} \quad \\ \frac{\left(\operatorname{CH}_{2}\right)_{m}-\operatorname{CH}_{2}}{\left(\operatorname{CH}_{2}\right)_{m}} \quad \\ \\ \frac{\left(\operatorname{CH}_{2}\right)_{m}-\operatorname{CH}_{2}}{\left(\operatorname{CH}_{2}\right)_{m}} \quad \\ \frac{\left(\operatorname{CH}_{2}\right)_{m}-\operatorname{CH}_{2}}{\left(\operatorname{CH}_{2}\right)_{m}} \quad \\ \frac{\left(\operatorname{CH}_{2}\right)_{m}-\operatorname{$$ wherein n is from 1 to about 12, m is from 1 to about 12, x is from 1 to about 2000 and R₃ is a hydrogen atom, an aryl group, or an alkyl group, wherein the aryl group or alkyl group can include one or more heteroatoms or —CH₂CH₂P₁O, —CH₂CH₂PO₂, —CH₂—CH—(CH₃)—P₁O, or —CH₂—CH—(CH₃)—PO₂. The symbols "P₁O" and "PO₂" mean polyolefin number 1 and polyolefin number 2, not "phosphorus oxide" or "phosphorus dioxide." Vinyl Terminated Macromonomers A "vinyl terminated macromonomer," (also referred to as vinyl terminated polyolefin") as used herein, refers to one or more of: - (i) a vinyl terminated polymer having at least 5% allyl chain ends (preferably 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 98%, or 99%); - (ii) a vinyl terminated polymer having an Mn of at least 160 g/mol, preferably 200 g/mol (measured by ¹H NMR) comprising of one or more C₄ to C₄₀ higher olefin derived units, where the higher olefin polymer comprises substantially no propylene derived units; and wherein the higher olefin polymer has at least 5% allyl chain ends; - (iii) a copolymer having an Mn of 300 g/mol or more (measured by ¹H NMR) comprising (a) from about 20 mol % to about 99.9 mol % of at least one C₅ to C₄₀ higher olefin, and (b) from about 0.1 mol % to about 80 mol % of propylene, wherein the higher olefin copolymer has at least 40% allyl chain ends; - (iv) a copolymer having an Mn of 300 g/mol or more (measured by ¹H NMR), and comprises (a) from about 80 mol % to about 99.9 mol % of at least one C₄ olefin, (b) from about 0.1 mol % to about 20 mol % of propylene; and wherein the vinyl terminated macromonomer has at least 40% allyl 55 chain ends relative to total unsaturation; 10 (vi) a propylene co-oligomer, comprising more than 90 mol % propylene and less than 10 mol % ethylene wherein the co-oligomer has: at least 93% allyl chain ends, a number average molecular weight (Mn) of about 500 g/mol to about 20,000 g/mol, an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.35:1.0, less than 100 ppm aluminum, and/or less than 250 regio defects per 10,000 monomer units; (vii) a propylene co-oligomer, comprising: at least 50 mol % propylene and from 10 mol % to 50 mol % ethylene, wherein the co-oligomer has: at least 90% allyl chain ends, an Mn of about 150 g/mol to about 20,000 g/mol, preferably 10,000 g/mol, and an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.2:1.0, wherein monomers having four or more carbon atoms are present at from 0 mol % to 3 mol %; (viii) a propylene co-oligomer, comprising: at least 50 mol % propylene, from 0.1 mol % to 45 mol % ethylene, and from 0.1 mol % to 5 mol % C₄ to C₁₂ olefin, wherein the co-oligomer has: at least 90% allyl chain ends, an Mn of about 150 g/mol to about 10,000 g/mol, and an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.35:1.0; (ix) a propylene co-oligomer, comprising: at least 50 mol % propylene, from 0.1 mol % to 45 mol % ethylene, and from 0.1 mol % to 5 mol % diene, wherein the co-oligomer has: at least 90% allyl chain ends, an Mn of about 150 g/mol to about 10,000 g/mol, and an isobutyl chain end to allylic vinyl group ratio of 0.7:1 to 1.35:1.0; (x) a homo-oligomer, comprising propylene, wherein the cooligomer has: at least 93% allyl chain ends, an Mn of about 500 g/mol to about 70,000 g/mol, alternately to about 20,000 g/mol, an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.2:1.0, and less than 1400 ppm aluminum; (xi) vinyl terminated polyethylene having: (a) at least 60% allyl chain ends; (b) a molecular weight distribution of less than or equal to 4.0; (c) a g'(vis) of greater than 0.95; and (d) an Mn (¹HNMR) of at least 20,000 g/mol; (xii) vinyl terminated polyethylene having: (a) at least 50% allyl chain ends; (b) a molecular weight distribution of less than or equal to 4.0; (c) a g'(vis) of 0.95 or less; (d) an Mn (¹HNMR) of at least 7,000 g/mol; and (e) a Mn (GPC)/Mn (¹HNMR) in the range of from about 0.8 to about 1.2; and (xiii) a vinyl terminated polymer having at least 30% allyl chain ends (preferably at least 40%, 50%, 60%, 70%, 80%, 90%, 95%, 98%, or 99%) and an Mn of 10,000 g/mol or more. It is understood by those of ordinary skill in the art that when the VTM's, as described here, are reacted with another material the "vinyl" (e.g. the allyl chain end)
is involved in the reaction and has been transformed. Thus, the language used herein describing that a fragment of the final product (typically referred to as PO, P_1O , or PO_2 in the formulae herein) is the residual portion of a vinyl terminated macromonomer (VTM) having had a terminal unsaturated carbon of an allylic chain and a vinyl carbon adjacent to the terminal unsaturated carbon, is meant to refer to the fact that the VTM has been incorporated in the product. Similarly stating that a product or material comprises a VTM means that the reacted form of the VTM is present, unless the context clearly indicates otherwise (such as a mixture of ingredients that do not have a catalytic agent present.) In some embodiments, the vinyl terminated macromonomer has an Mn of at least 200 g/mol, (e.g., 200 g/mol to 100,000 g/mol, e.g., 200 g/mol to 75,000 g/mol, e.g., 200 g/mol to 60,000 g/mol, e.g., 300 g/mol to 60,000 g/mol, or e.g., 750 g/mol to 30,000 g/mol) (measured by ¹H NMR) and comprises one or more (e.g., two or more, three or more, four or more, and the like) C_4 to C_{40} (e.g., C_4 to C_{30} , C_4 to C_{20} , or C₄ to C₁₂, e.g., butene, pentene, hexene, heptene, octene, nonene, decene, undecene, dodecene, norbornene, norbornadiene, dicyclopentadiene, cyclopentene, cycloheptene, cyclooctene, cyclooctadiene, cyclododecene, 7-oxanor- 5 bornene, 7-oxanorbornadiene, substituted derivatives thereof, and isomers thereof) olefin derived units, where the vinyl terminated macromonomer comprises substantially no propylene derived units (e.g., less than 0.1 wt % propylene, e.g., 0 wt %); and wherein the vinyl terminated macromonomer has at least 5% (at least 10%, at least 15%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%; at least 80%, at least 90%, or at least 95%) allyl chain ends (relative to total unsaturation); and optionally, an allyl chain end to vinylidene chain end ratio of 1:1 or greater (e.g., 15 greater than 2:1, greater than 2.5:1, greater than 3:1, greater than 5:1, or greater than 10:1); and even further optionally, e.g., substantially no isobutyl chain ends (e.g., less than 0.1 wt % isobutyl chain ends). In some embodiments, the vinyl terminated macromonomers may also comprise ethylene 20 derived units, e.g., at least 5 mol % ethylene (e.g., at least 15 mol % ethylene, e.g., at least 25 mol % ethylene, e.g., at least 35 mol % ethylene, e.g., at least 45 mol % ethylene, e.g., at least 60 mol % ethylene, e.g., at least 75 mol % ethylene, or e.g., at least 90 mol % ethylene). Such vinyl terminated mac- 25 romonomers are further described in U.S. Pat. No. 8,426,659, which is hereby incorporated by reference. In some embodiments, the vinyl terminated macromonomers may have an Mn (measured by ¹H NMR) of greater than 200 g/mol (e.g., 300 g/mol to 60,000 g/mol, 400 g/mol to 30,000 g/mol, 500 g/mol to 35,000 g/mol, 300 g/mol to 15,000 g/mol, 400 g/mol to 12,000 g/mol, or 750 g/mol to 10,000 g/mol), and comprise: - (a) from about 20 mol % to 99.9 mol % (e.g., from about 25 mol % to about 90 mol %, from about 30 mol % to about 85 35 mol %, from about 35 mol % to about 80 mol %, from about 40 mol % to about 75 mol %, or from about 50 mol % to about 95 mol %) of at least one $\rm C_5$ to $\rm C_{40}$ (e.g., $\rm C_6$ to $\rm C_{20}$) higher olefin; and - (b) from about 0.1 mol % to 80 mol % (e.g., from about 5 mol 40 % to 70 mol %, from about 10 mol % to about 65 mol %, from about 15 mol % to about 55 mol %, from about 25 mol % to about 50 mol %, or from about 30 mol % to about 80 mol %) of propylene; wherein the vinyl terminated macromonomer has at least 45 40% allyl chain ends (e.g., at least 50% allyl chain ends, at least 60% allyl chain ends, at least 70% allyl chain ends, or at least 80% allyl chain ends, at least 90% allyl chain ends, at least 95% allyl chain ends) relative to total unsaturation; and, optionally, an isobutyl chain end to allyl chain end ratio of less 50 than 0.70:1, less than 0.65:1, less than 0.60:1, less than 0.50:1, or less than 0.25:1; and further optionally, an allyl chain end to vinylidene chain end ratio of greater than 2:1 (e.g., greater than 10:1); and even further optionally, an allyl chain end to vinylene ratio is greater than 1:1 (e.g., greater than 2:1 or greater than 5:1). Such macromonomers are further described in U.S. Pat. No. 8,399,724, hereby incorporated by reference. In another embodiment, the vinyl terminated macromonomer has an Mn of 300 g/mol or more (measured by 1H NMR, 60 e.g., 300 g/mol to 60,000 g/mol, 400 g/mol to 50,000 g/mol, 500 g/mol to 35,000 g/mol, 300 g/mol to 15,000 g/mol, 400 g/mol to 12,000 g/mol, or 750 g/mol to 10,000 g/mol), and comprises: (a) from about 80 mol % to about 99.9 mol % of at least one 65 C₄ olefin, e.g., about 85 mol % to about 99.9 mol %, e.g., about 90 mol % to about 99.9 mol %; 12 (b) from about 0.1 mol % to about 20 mol % of propylene, e.g., about 0.1 mol % to about 15 mol %, e.g., about 0.1 mol % to about 10 mol %; and wherein the vinyl terminated macromonomer has at least 40% allyl chain ends (e.g., at least 50% allyl chain ends, at least 60% allyl chain ends, at least 70% allyl chain ends, or at least 80% allyl chain ends, at least 90% allyl chain ends, at least 95% allyl chain ends, at least 95% allyl chain ends) relative to total unsaturation, and in some embodiments, an isobutyl chain end to allyl chain end ratio of less than 0.70:1, less than 0.65:1, less than 0.60:1, less than 0.50:1, or less than 0.25:1, and in further embodiments, an allyl chain end to vinylidene group ratio of more than 2:1, more than 2.5:1, more than 3:1, more than 5:1, or more than 10:1. Such macromonomers are also further described in U.S. Pat. No. 8,399,724, which is hereby incorporated by reference. In other embodiments, the vinyl terminated macromonomer is a propylene co-oligomer having an Mn of 300 g/mol to 30,000 g/mol as measured by ¹H NMR (e.g., 400 g/mol to 20,000 g/mol, e.g., 500 g/mol to 15,000 g/mol, e.g., 600 g/mol to 12,000 g/mol, e.g., 800 g/mol to 10,000 g/mol, e.g., 900 g/mol to 8,000 g/mol, e.g., 900 g/mol to 7,000 g/mol), comprising 10 mol % to 90 mol % propylene (e.g., 15 mol % to 85 mol %, e.g., 20 mol % to 80 mol %, e.g., 30 mol % to 75 mol %, e.g., 50 mol % to 90 mol %) and 10 mol % to 90 mol % (e.g., 85 mol % to 15 mol %, e.g., 20 mol % to 80 mol %, e.g., 25 mol % to 70 mol %, e.g., 10 mol % to 50 mol %) of one or more alpha-olefin comonomers (e.g., ethylene, butene, hexene, or octene, e.g., ethylene), wherein the co-oligomer has at least X % allyl chain ends (relative to total unsaturations), where: 1) X=(-0.94 (mol % ethylene incorporated)+100{alternately 1.20 (-0.94 (mol % ethylene incorporated)+ 100), alternately 1.50 (-0.94 (mol % ethylene incorporated)+ 100)}), when 10 mol % to 60 mol % ethylene is present in the co-oligomer; 2) X=45 (alternately 50, alternately 60), when greater than 60 mol % and less than 70 mol % ethylene is present in the co-oligomer; and 3) X=(1.83*(mol % ethylene incorporated)-83, {alternately 1.20 [1.83*(mol % ethylene incorporated)-83], alternately 1.50 [1.83*(mol % ethylene incorporated)-83]}), when 70 mol % to 90 mol % ethylene is present in the co-oligomer. Such macromonomers are further described in U.S. Pat. No. 8,372,930, which is hereby incorporated by reference. In other embodiments, the vinyl terminated macromonomer is a propylene co-oligomer, comprising more than 90 mol % propylene (e.g., 95 mol % to 99 mol %, e.g., 98 mol % to 9 mol %) and less than 10 mol % ethylene (e.g., 1 mol % to 4 mol %, e.g., 1 mol % to 2 mol %), wherein the co-oligomer has: at least 93% allyl chain ends (e.g., at least 95%, e.g., at least 97%, e.g., at least 98%); a number average molecular weight (Mn) of about 400 g/mol to about 30,000 g/mol, as measured by 1H NMR (e.g., 500 g/mol to 20,000 g/mol, e.g., 600 g/mol to 15,000 g/mol, e.g., 700 g/mol to 10,000 g/mol, e.g., 800 g/mol to 9,000 g/mol, e.g., 900 g/mol to 8,000 g/mol, e.g., 1,000 g/mol to 6,000 g/mol); an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.35:1.0, and less than 1400 ppm aluminum, (e.g., less than 1200 ppm, e.g., less than 1000 ppm, e.g., less than 500 ppm, e.g., less than 100 ppm). Such macromonomers are further described in U.S. Pat. No. 8.372.930. In other embodiments, the vinyl terminated macromonomer is a propylene co-oligomer, comprising: at least 50 mol % (e.g., 60 mol % to 90 mol %, e.g., 70 mol % to 90 mol %) propylene and from 10 mol % to 50 mol % (e.g., 10 mol % to 40 mol %, e.g., 10 mol % to 30 mol %) ethylene, wherein the co-oligomer has: at least 90% allyl chain ends (e.g., at least 91%, e.g., at least 93%, e.g., at least 95%, e.g., at least 98%); an Mn of about 150 g/mol to about 20,000 g/mol, as measured by $^1\mathrm{H}$ NMR (e.g., 200 g/mol to 15,000 g/mol, e.g., 250 g/mol to 15,000 g/mol, e.g., 300 g/mol to 10,000 g/mol, e.g., 400 g/mol to 9,500 g/mol, e.g., 500 g/mol to 9,000 g/mol, e.g., 750 g/mol to 9,000 g/mol); and an isobutyl chain end to allylic 5 vinyl group ratio of 0.8:1 to 1.3:1.0, wherein monomers having four or more carbon atoms are present at from 0 mol % to 3 mol % (e.g., at less than 1 mol %, e.g., less than 0.5 mol %, e.g., at 0 mol %). Such macromonomers are further described in U.S. Pat. No. 8,372,930. In other embodiments, the vinyl terminated macromonomer is a propylene co-oligomer, comprising: at least 50 mol % (e.g., at least 60 mol %, e.g., 70 mol % to 99.5 mol %, e.g., 80 mol % to 99 mol %, e.g., 90 mol % to 98.5 mol %) propylene, from 0.1 mol % to 45 mol % (e.g., at least 35 mol %, e.g., 0.5 15 mol % to 30 mol %, e.g., 1 mol % to 20 mol %, e.g., 1.5 mol % to 10 mol %) ethylene, and from 0.1 mol % to 5 mol % (e.g., $0.5 \text{ mol } \% \text{ to } 3 \text{ mol } \%, \text{ e.g.}, 0.5 \text{ mol } \% \text{ to } 1 \text{ mol } \%) \text{ C}_4 \text{ to } \text{C}_{12}$ olefin (such as butene, hexene, or octene, e.g., butene),
wherein the co-oligomer has: at least 90% allyl chain ends 20 (e.g., at least 91%, e.g., at least 93%, e.g., at least 95%, e.g., at least 98%); a number average molecular weight (Mn) of about 150 g/mol to about 15,000 g/mol, as measured by ¹H NMR (e.g., 200 g/mol to 12,000 g/mol, e.g., 250 g/mol to 10,000 g/mol, e.g., 300 g/mol to 10,000 g/mol, e.g., 400 g/mol 25 to 9500 g/mol, e.g., 500 g/mol to 9,000 g/mol, e.g., 750 g/mol to 9,000 g/mol); and an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.35:1.0. Such macromonomers are further described in U.S. Pat. No. 8,372,930. In other embodiments, the vinyl terminated macromono- 30 mer is a propylene co-oligomer, comprising: at least 50 mol % (e.g., at least 60 mol %, e.g., 70 mol % to 99.5 mol %, e.g., 80 mol % to 99 mol %, e.g., 90 mol % to 98.5 mol %) propylene, from 0.1 mol % to 45 mol % (e.g., at least 35 mol %, e.g., 0.5 mol % to 30 mol %, e.g., 1 mol % to 20 mol %, e.g., 1.5 mol 35 % to 10 mol %) ethylene, and from 0.1 mol % to 5 mol % (e.g., 0.5 mol % to 3 mol %, e.g., 0.5 mol % to 1 mol %) diene (such as C₄ to C₁₂ alpha-omega dienes (such as butadiene, hexadiene, octadiene), norbornene, ethylidene norbornene, vinylnorbornene, norbornadiene, and dicyclopentadiene), wherein 40 the co-oligomer has at least 90% allyl chain ends (e.g., at least 91%, e.g., at least 93%, e.g., at least 95%, e.g., at least 98%); a number average molecular weight (Mn) of about 150 g/mol to about 20,000 g/mol, as measured by ¹H NMR (e.g., 200 g/mol to 15,000 g/mol, e.g., 250 g/mol to 12,000 g/mol, e.g., 45 300 g/mol to 10,000 g/mol, e.g., 400 g/mol to 9,500 g/mol, e.g., 500 g/mol to 9,000 g/mol, e.g., 750 g/mol to 9,000 g/mol); and an isobutyl chain end to allylic vinyl group ratio of 0.7:1 to 1.35:1.0. Such macromonomers are further described in U.S. Pat. No. 8,372,930. In other embodiments, the vinyl terminated macromonomer is a propylene homo-oligomer, comprising propylene and less than 0.5 wt % comonomer, e.g., 0 wt % comonomer, wherein the co-oligomer has: - i) at least 93% allyl chain ends (e.g., at least 95%, e.g., at least 55 96%, e.g., at least 97%, e.g., at least 98%, e.g., at least 99%); - ii) a number average molecular weight (Mn) of about 500 g/mol to about 20,000 g/mol, as measured by ¹H NMR (e.g., 500 g/mol to 15,000 g/mol, e.g., 700 g/mol to 10,000 60 g/mol, e.g., 800 g/mol to 8,000 g/mol, e.g., 900 g/mol to 7,000 g/mol, e.g., 1,000 g/mol to 6,000 g/mol, e.g., 1,000 g/mol to 5,000 g/mol); - iii) an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.3:1.0; and - iv) less than 1400 ppm aluminum, (e.g., less than 1200 ppm, e.g., less than 1000 ppm, e.g., less than 500 ppm, e.g., less 14 than 100 ppm). Such macromonomers are also further described in U.S. Pat. No. 8,372,930. The vinyl terminated macromonomers may be homopolymers, copolymers, terpolymers, and so on. Any vinyl terminated macromonomers described herein has one or more of: (i) an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.3:1.0: - (ii) an allyl chain end to vinylidene chain end ratio of greater than 2:1 (e.g., greater than 2.5:1, greater than 3:1, greater than 5:1, or greater than 10:1); - (iii) an allyl chain end to vinylene ratio is greater than 1:1 (e.g., greater than 2:1 or greater than 5:1); and - (iv) at least 5% allyl chain ends (preferably 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 98%, or 99%). Vinyl terminated macromonomers generally have a saturated chain end (or terminus) and/or an unsaturated chain end or terminus. The unsaturated chain end of the vinyl terminated macromonomer comprises an "allyl chain end" or a "3-alkyl" chain end. An allyl chain end is represented by CH₂CH—CH₂—, as shown in the formula: where M represents the polymer chain. "Allylic vinyl group," "allyl chain end," "vinyl chain end," "vinyl termination," "allylic vinyl group," and "vinyl terminated" are used interchangeably in the following description. The number of allyl chain ends, vinylidene chain ends, vinylene chain ends, and other unsaturated chain ends is determined using ¹H NMR at 120° C. using deuterated tetrachloroethane as the solvent on an at least 250 MHz NMR spectrometer, and in selected cases, confirmed by ¹³C NMR. Resconi has reported proton and carbon assignments (neat perdeuterated tetrachloroethane used for proton spectra, while a 50:50 mixture of normal and perdeuterated tetrachloroethane was used for carbon spectra; all spectra were recorded at 100° C. on a BRUKER spectrometer operating at 500 MHz for proton and 125 MHz for carbon) for vinyl terminated oligomers in J. American Chemical Soc., 114, 1992, pp. 1025-1032 that are useful herein. Allyl chain ends are reported as a molar percentage of the total number of moles of unsaturated groups (that is, the sum of allyl chain ends, vinylidene chain ends, vinylene chain ends, and the like). A 3-alkyl chain end (where the alkyl is a C_1 to C_{38} alkyl), also referred to as a "3-alkyl vinyl end group" or a "3-alkyl vinyl termination," is represented by the formula: 3-alkyl vinyl end group where "••••" represents the polyolefin chain and R^b is a C_1 to C_{38} alkyl group, or a C_1 to C_{20} alkyl group, such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, and the like. The amount of 3-alkyl chain ends is determined using 13 C NMR as set out below. ¹³C NMR data is collected at 120° C. at a frequency of at least 100 MHz, using a BRUKER 400 MHz NMR spectrometer. A 90 degree pulse, an acquisition time adjusted to give a digital resolution between 0.1 and 0.12 Hz, at least a 10 second pulse acquisition delay time with continuous broad- | Chain End | ¹³ C NMR Chemical Shift | | |-----------|------------------------------------|--| | P~i-Bu | 23-5 to 25.5 and 25.8 to 26.3 ppm | | | E~i-Bu | 39.5 to 40.2 ppm | | | P~Vinyl | 41.5 to 43 ppm | | | E~Vinyl | 33.9 to 34.4 ppm | | The "allyl chain end to vinylidene chain end ratio" is defined to be the ratio of the percentage of allyl chain ends to the percentage of vinylidene chain ends. The "allyl chain end to vinylene chain end ratio" is defined to be the ratio of the percentage of allyl chain ends to the percentage of vinylene chain ends. Vinyl terminated macromonomers typically also have a saturated chain end. In polymerizations where propylene is present, the polymer chain may initiate growth in a propylene monomer, thereby generating an isobutyl chain end. An "isobutyl chain end" is defined to be an end or terminus of a polymer, represented as shown in the formula below: where M represents the polymer chain. Isobutyl chain ends are determined according to the procedure set out in WO 2009/155471. The "isobutyl chain end to allylic vinyl group ratio" is defined to be the ratio of the percentage of isobutyl chain ends to the percentage of allyl chain ends. The "isobutyl chain end to alpha bromo carbon ratio" is defined to be the ratio of the percentage of isobutyl chain ends to the percentage of brominated chain ends (at about 34 ppm). In polymerizations comprising C_4 or greater monomers (or "higher olefin" monomers), the saturated chain end may be a C_4 or greater (or "higher olefin") chain end, as shown in the formula below: $$M \longrightarrow C_n$$ higher olefin chain end where M represents the polymer chain and n is an integer selected from 4 to 40. This is especially true when there is substantially no ethylene or propylene in the polymerization. In an ethylene/(C_4 or greater monomer) copolymerization, the polymer chain may initiate growth in an ethylene monomer, thereby generating a saturated chain end which is an ethyl chain end. Mn (1 H NMR) is determined according to the 16 following NMR method. ¹H NMR data is collected at either 25° C. or 120° C. (for purposes of the claims, 120° C. shall be used) in a 5 mm probe using a Varian spectrometer with a ¹H frequency of 250 MHz, 400 MHz, or 500 MHz (for the purpose of the claims, a proton frequency of 400 MHz is used). Data are recorded using a maximum pulse width of 45°, 8 seconds between pulses and signal averaging 120 transients. Spectral signals are integrated and the number of unsaturation types per 1000 carbons is calculated by multiplying the different groups by 1000 and dividing the result by the total number of carbons. Mn is calculated by dividing the total number of unsaturated species into 14,000 and has units of g/mol. The chemical shift regions for the olefin types are defined to be between the following spectral regions. | • | |---| Unless otherwise stated, Mn (GPC) is determined using the GPC-DRI method described below, however, Nota Bene: for the purpose of the claims, Mn is determined by ¹H NMR. Mn, Mw, and Mz may be measured by using a Gel Permeation Chromatography (GPC) method using a High Temperature Size Exclusion Chromatograph (SEC, either from Waters Corporation or Polymer Laboratories), equipped with a differential refractive index detector (DRI). Molecular weight distribution (MWD) is Mw (GPC)/Mn (GPC). Experimental details, are described in: T. Sun, P. Brant, R. R. Chance, and W. W. Graessley, *Macromolecules*, Volume 34, Number 19, pp. 6812-6820, (2001) and references therein. Three Polymer 35 Laboratories PLgel 10 mm Mixed-B columns are used. The nominal flow rate is 0.5 cm³/min and the nominal injection volume is 300 μL. The various transfer lines, columns and differential refractometer (the DRI detector) are contained in an oven maintained at 135° C. Solvent for the SEC experiment is prepared by dissolving 6 grams of butylated hydroxy toluene as an antioxidant in 4 liters of Aldrich reagent grade 1,2,4 trichlorobenzene (TCB). The TCB mixture is then filtered through a 0.7 µm glass pre-filter and subsequently through a 0.1 µm Teflon filter. The TCB is then degassed with an online degasser before entering the SEC. Polymer solutions are prepared by placing dry polymer in a glass container, adding the desired amount
of TCB, then heating the mixture at 160° C. with continuous agitation for about 2 hours. All quantities are measured gravimetrically. The TCB densities used to express the polymer concentration in mass/volume units are 1.463 g/mL at 25° C. and 1.324 g/mL at 135° C. The injection concentration is from 1.0 to 2.0 mg/mL, with lower concentrations being used for higher molecular weight samples. Prior to running each sample the DRI detector and the injector are purged. Flow rate in the apparatus is then increased to 0.5 mL/minute, and the DRI is allowed to stabilize for 8 to 9 hours before injecting the first sample. The concentration, c, at each point in the chromatogram is calculated from the baseline-subtracted DRI signal, I_{DRI} , using the following equation: $c = K_{DRI}I_{DRI}/(dn/dc)$ where K_{DRI} is a constant determined by calibrating the DRI, and (dn/dc) is the refractive index increment for the system. The refractive index, n=1.500 for TCB at 135° C. and =690 nm. For purposes of this invention and the claims thereto, (dn/dc)=0.104 for propylene polymers and ethylene poly- 17 mers, and 0.1 otherwise. Units of parameters used throughout this description of the SEC method are: concentration is expressed in g/cm³, molecular weight is expressed in g/mol, and intrinsic viscosity is expressed in dL/g. The branching index (g'(vis)) is calculated using the output 5 of the SEC-DRI-LS-VIS method as follows. The average intrinsic viscosity, $[\eta]$ avg, of the sample is calculated by: $$[\eta]_{avg} = \frac{\sum c_i [\eta]_i}{\sum c_i}$$ where the summations are over the chromatographic slices, i, between the integration limits. The branching index g'(vis) is defined as: $$g'vis = \frac{[\eta]_{avg}}{kM_o^{\alpha}}$$ where, for purpose of this invention and claims thereto, α =0.695 and k=0.000579 for linear ethylene polymers, α =0.705 and k=0.000262 for linear propylene polymers, and α =0.695 and k=0.000181 for linear butene polymers. My is the viscosity-average molecular weight based on molecular weights determined by LS analysis. See Macromolecules, 2001, 34, pp. 6812-6820 and Macromolecules, 2005, 38, pp. 7181-7183, for guidance on selecting a linear standard having similar molecular weight and comonomer content, and determining k coefficients and α exponents. In an embodiment, the polyolefin is derived from a vinyl terminated propylene polymer. In an embodiment, the vinyl terminated propylene polymer is produced using a process comprising: contacting propylene, under polymerization conditions, with a catalyst system comprising an activator and at least one metallocene compound represented by the formula: where: M is hafnium or zirconium; each X is, independently, selected from the group consisting of hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides, amides, alkoxides, sulfides, phosphides, halides, dienes, amines, phosphines, ethers, and a combination thereof, (two X's may form a part of a fused ring or a ring 65 system); each R^1 is, independently, a C_1 to C_{10} alkyl group; 18 each R^2 is, independently, a C_1 to C_{10} alkyl group; each R^3 is hydrogen; each R⁴, R⁵, and R⁶, is, independently, hydrogen or a substituted hydrocarbyl or unsubstituted hydrocarbyl group, or a heteroatom: T is a bridging group; further provided that any of adjacent R⁴, R⁵, and R⁶ groups may form a fused ring or multicenter fused ring system where the rings may be aromatic, partially saturated or saturated; and obtaining a propylene polymer having at least 50% allyl chain ends (relative to total unsaturations), as described in U.S. Pat. No. 8,455,597, which is incorporated by reference in its entirety herein. In an embodiment, the vinyl terminated propylene polymer is produced using a process comprising: 1) contacting: a) one or more olefins with b) a transition metal catalyst compound represented by the formula: $$R^{3}$$ R^{1} R^{10} R^{12} R^{13} R^{10} R^{14} 40 wherein 55 M is hafnium or zirconium; each X is, independently, selected from the group consisting of hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides, amides, alkoxides, sulfides, phosphides, halogens, dienes, amines, phosphines, ethers, or a combination thereof: each R^1 and R^3 are, independently, a C_1 to C_8 alkyl group; and each R^2 , R^4 , R^5 , R^6 , R^7 , R^8 , R^9 , R^{10} , R^{11} , R^{12} , R^{13} , and R^{14} are, independently, hydrogen, or a substituted or unsubstituted hydrocarbyl group having from 1 to 8 carbon atoms, provided however that at least three of the R^{10} - R^{14} groups are not hydrogen; and 2) obtaining vinyl terminated polymer having an Mn of 300 g/mol or more and at least 30% allyl chain ends (relative to total unsaturation), as described in U.S. Pat. No. 8,318,998, which is incorporated by reference in its entirety herein. In an embodiment, the polyolefin chain is derived from a higher olefin copolymer comprising allyl chain ends. In an embodiment, the higher olefin copolymer comprising allyl chain ends has an Mn of 300 g/mol or more (measured by ¹H NMR) comprising: (i) from about 20 to about 99.9 mol % of at least one $\rm C_5$ to $\rm C_{40}$ higher olefin; and (ii) from about 0.1 mol % to about 80 mol % of propylene; wherein the higher olefin copolymer has at least 40% allyl chain ends, as described in U.S. Pat. No. 8,399,724, which is incorporated by reference in its entirety herein. In an embodiment, the polyolefin chain is derived from a vinyl terminated branched polyolefin. In an embodiment, the vinyl terminated branched polyolefin has an Mn (¹H NMR) of 7,500 to 60,000 g/mol, comprising one or more alpha olefin derived units comprising ethylene and/or propylene, and having: (i) 50% or greater allyl chain ends, relative to total number of unsaturated chain ends; and (ii) a g'_{vis} of 0.90 or less, as described in U.S. Publication No. 2012-0245299, which is incorporated by reference in its entirety herein. In an embodiment, the polyolefin chain is derived from a vinyl terminated branched polyolefin produced by a process for polymerization, comprising: (i) contacting, at a temperature greater than 35° C., one or more monomers comprising ethylene and/or propylene, with a catalyst system comprising a metallocene catalyst compound and an activator, wherein the metallocene catalyst compound is represented by the following formula: $$R^4$$ R^3 R^2 R^4 R^3 R^4 R^4 R^3 R^4 R^5 R^4 where: M is selected from the group consisting of zirconium 40 or hafnium: each X is, independently, selected from the group consisting of hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides, amides, alkoxides, sulfides, phosphides, halides, dienes, amines, phosphines, ethers, and a combination 45 thereof, (two X's may form a part of a fused ring or a ring system): each R¹, R², R³, R⁴, R⁵, and R⁶, is, independently, hydrogen or a substituted or unsubstituted hydrocarbyl group, a heteroatom or heteroatom containing group; further provided that any two adjacent R groups may form a fused ring or multicenter fused ring system where the rings may be aromatic, partially saturated or saturated; further provided that any of adjacent R⁴, R⁵, and R⁶ groups may form a fused ring or multicenter fused ring system 55 where the rings may be aromatic, partially saturated or saturated; T is a bridging group represented by the formula $(Ra)_2J$, where J is one or more of C, Si, Ge, N or P, and each Ra is, independently, hydrogen, halogen, C_1 to C_{20} hydrocarbyl 60 or a C_1 to C_{20} substituted hydrocarbyl, provided that at least one R^3 is a substituted or unsubstituted phenyl group, if any of R^1 , R^2 , R^4 , R^5 , or R^6 are not hydrogen; (ii) converting at least 50 mol % of the monomer to polyolefin; and (iii) obtaining a branched polyolefin having greater than 50% allyl chain ends, relative to total unsaturated chain ends and a Tm of 60° C. or more, as described in U.S. Publication No. 2012-0245299, which is incorporated by reference in its entirety herein. In an embodiment of the invention, the polyolefin is derived from a vinyl terminated ethylene polymer, preferably a vinyl terminated polyethylene (preferably in particulate form) having: (a) at least 60% allyl chain ends (preferably at least 65%, preferably at least 70%, preferably at least 75%, preferably at least 80%, preferably at least 85%, preferably at least 90%, preferably at least 96%, preferably at least 97%, preferably at least 98%, preferably at least 99%, or preferably at least 100%); (b) a molecular weight distribution of less than or equal to 4.0 (preferably less than or equal to 3.8, preferably less than or equal to 3.5, preferably less than or equal to 3.2, preferably less than or equal to 2.8, or preferably less than or equal to 2.5); (c) an Mn (¹HNMR) of at least 20,000 g/mol (preferably at least 25,000 g/mol, preferably at least 30,000 g/mol, preferably at least 50,000 g/mol, and, optionally, less than 125,000 g/mol, preferably less than 120,000, or preferably less than 110,000); (d) optionally, an Mn (GPC)/Mn (¹HNMR) in the range of from about 0.8 to about 1.2 (preferably from about from 0.9 to about 1.1, preferably from about 0.95 to about 1.1); and (e) optionally, a g'(vis) of greater than 0.95 (preferably greater than 0.96, preferably greater than 0.98, preferably greater than 0.98, and, optionally, preferably less than or equal to 1.0). Preferably, the vinyl terminated ethylene polymers are prepared by a process comprising: (a) contacting ethylene with a supported metallocene catalyst system; wherein the supported catalyst system comprises: (i) a support material; (ii) an activator having from about 1 wt % to about 14 wt % trimethylaluminum, based on the weight of the activator; (iii) a metallocene compound represented by the formula: wherein: T is Si or Ge; each R^A is a C_1 to C_{20} substituted
or unsubstituted hydrocarbyl group; each R^B is, independently, H, or a C_1 to C_8 substituted or unsubstituted hydrocarbyl group, or a group represented by the formula — CH_2R^x ; wherein R^x is a C_1 to C_{20} substituted or unsubstituted hydrocarbyl group, provided that at least one R^B is methyl or a group represented by the formula — CH_2R^x ; each R^C is, independently, H or a C_1 to C_{20} substituted or unsubstituted hydrocarbyl group; each A is independently selected from the group consisting of C_1 to C_{20} substituted or unsubstituted hydrocarbyl groups, hydrides, amides, amines, alkoxides, sulfides, phosphides, halides, dienes, phosphines, and ethers; each X is, independently, hydrogen, halogen or a C_1 to C_{20} hydrocarbyl, and two X groups can form a cyclic structure including aromatic, partially saturated, or saturated cyclic or fused ring system; further provided that any of adjacent R^A , R^B , and/or R^C groups may form a fused ring or multicenter fused ring systems, where the rings may be substituted or unsubstituted, and may be aromatic, partially unsaturated, or unsubstituted. (b) obtaining a vinyl terminated polyethylene having: (i) at least 60% allyl chain ends; (ii) a molecular weight distribution of less than or equal to 4.0; and (iii) a Mn (¹HNMR) of at least 20,000 g/mol. Preferably the vinyl terminated ethylene polymers are made according the process (and using the catalyst systems) described in (U.S. Ser. No. 61/704,606, filed Sep. 24, 2012, entitled Production of Vinyl Terminated Polyethylene Using Supported Catalyst System and having Attorney Docket Number 2012EM184). In an embodiment of the invention, the polyolefin is derived from a vinyl terminated ethylene polymer, preferably a vinyl terminated polyethylene having: (i) at least 50% allyl chain ends (preferably 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%); (ii) a molecular weight distribution of less than or equal to 4.0 (preferably less than or equal to 3.8, 3.6, 3.5, 3.4, 3.2, 3.0, 2.8, or 2.5); (iii) a g'(vis) of 0.95 or less (preferably less than 0.93, 0.90, 0.88, or 0.85); (iv) an Mn (¹HNMR) of at least 7,000 g/mol (preferably at least 10,000 g/mol, 15,000 g/mol, 20,000 g/mol, 25,000 g/mol, 30,000 g/mol, 45,000 g/mol, 55,000 g/mol, 65,000 g/mol, or 85,000 g/mol, and, optionally, less than 125,000 g/mol); and (v) a Mn (GPC)/Mn (¹HNMR) in the range of from about 0.8 to about 1.2 (preferably from 0.85 to 1.15, 0.90 to 1.10, and 0.95 to 1.00). Preferably the vinyl terminated ethylene polymers are produced by a process comprising: (a) contacting ethylene with a metallocene catalyst system; wherein the catalyst system comprises: (i) an ionizing activator; (ii) a metallocene compound represented by the formula: wherein T is Si or Ge; each R^A is a C_1 to C_{20} substituted or unsubstituted hydrocarbyl group; each R^B is, independently, 55 H or a C_1 to C_8 substituted or unsubstituted hydrocarbyl group, or a group represented by the formula — CH_2R^x ; wherein R^x is a C_1 to C_{20} substituted or unsubstituted hydrocarbyl group, provided that at least one R^B is methyl or a group represented by the formula — CH_2R^x ; each R^C is, independently, H or a C_1 to C_{20} substituted or unsubstituted hydrocarbyl group; each A is independently selected from the group consisting of C_1 to C_{20} substituted or unsubstituted hydrocarbyl groups, hydrides, amides, amines, alkoxides, sulfides, phosphides, halides, dienes, phosphines, and ethers; 65 each X is, independently, hydrogen, halogen, or a C_1 to C_{20} hydrocarbyl, and two X groups can form a cyclic structure 22 including aromatic, partially saturated, or saturated cyclic or fused ring system; further provided that any of adjacent R^A , R^B , and/or R^C groups may form a fused ring or multicenter fused ring systems, where the rings may be substituted or unsubstituted, and may be aromatic, partially unsaturated, or unsaturated; (b) obtaining a vinyl terminated polyethylene having: (i) at least 50% allyl chain ends; (ii) a molecular weight distribution of less than or equal to 4.0; (iii) a g'(vis) of 0.95 or less; and (iv) a Mn (¹HNMR) of at least 7,000 g/mol; and (e) a Mn (GPC)/Mn (¹HNMR) in the range of from about 0.8 to about 1.2. Preferably the vinyl terminated ethylene polymers are made according the process (and using the catalyst systems) described in (U.S. Ser. No. 61/704,604, filed Sep. 24, 2012, entitled Production of Vinyl Terminated Polyethylene and having Attorney Docket Number 2012EM185). In any of the polymerizations described herein, the activator may be an alumoxane, an aluminum alkyl, a stoichiometric activator (also referred to as an ionizing activator), which may be neutral or ionic, and/or a conventional-type cocatalyst, unless otherwise stated. Preferred activators typically include alumoxane compounds, modified alumoxane compounds, stoichiometric activators, and ionizing anion precursor compounds that abstract one reactive, σ -bound, metal ligand making the metal complex cationic and providing a charge-balancing noncoordinating or weakly coordinating anion. Alumoxane Activators In an embodiment of the invention, alumoxane activators are utilized as an activator in the catalyst composition, preferably methylalumoxane (MAO), modified methylalumoxane (MMAO), ethylalumoxane, and/or isobutylalumoxane. Preferably, the activator is a TMA-depleted activator (where TMA means trimethylaluminum). Any method known in the art to remove TMA may be used. For example, to produce a TMA-depleted activator, a solution of alumoxane (such as methylalumoxane), for example, 30 wt % in toluene may be diluted in toluene and the aluminum alkyl (such as TMA in the case of MAO) is removed from the solution, for example, 40 by combination with trimethylphenol and filtration of the solid. In such embodiments, the TMA-depleted activator comprises from about 1 wt % to about 14 wt % trimethylaluminum (preferably less than 13 wt %, preferably less than 12 wt %, preferably less than 10 wt %, preferably less than 5 wt 45 %, or preferably O wt %, or, optionally, greater than 0 wt % or greater than 1 wt %). Stoichiometric Activators The catalyst systems useful herein may comprise one or more stoichiometric activators. A stoichiometric activator is a non-alumoxane compound which when combined in a reaction with the catalyst compound (such as a metallocene compound) forms a catalytically active species, typically at molar ratios of stoichiometric activator to metallocene compound of 10:1 or less (preferably 5:1, more preferably 2:1, or even more preferably 1:1), however is within the scope of this invention to use a molar ratio of stoichiometric activator to metallocene compound of greater than 10:1 as well. Useful stoichiometric (or non-alumoxane) activator-to-catalyst ratios range from 0.5:1 to 10:1, preferably 1:1 to 5:1, although ranges of from 0.1:1 to 100:1, alternately from 0.5:1 to 200:1, alternately from 1:1 to 1000:1 may be used. Stoichiometric activators are non-alumoxane compounds which may be neutral or ionic, such as tri (n-butyl) ammonium tetrakis (pentafluorophenyl) borate, a tris perfluorophenyl boron metalloid precursor, or a tris perfluoronaphthyl boron metalloid precursor, polyhalogenated heteroborane anions (WO 98/43983), boric acid (U.S. Pat. No. 5,942,459), or a combination thereof. It is also within the scope of this invention to use stoichiometric activators alone or in combination with alumoxane or modified alumoxane activators. Neutral Stoichiometric Activators Examples of neutral stoichiometric activators include trisubstituted boron, tellurium, aluminum, gallium and indium or mixtures thereof. The three substituent groups are each independently selected from alkyls, alkenyls, halogens, substituted alkyls, aryls, arylhalides, alkoxy, and halides. Prefer- 10 ably, the three groups are independently selected from halogen, mono or multicyclic (including halosubstituted) aryls, alkyls, and alkenyl compounds, and mixtures thereof, preferred are alkenyl groups having 1 to 20 carbon atoms, alkyl groups having 1 to 20 carbon atoms, alkoxy groups having 1 to 20 carbon atoms, and aryl groups having 3 to 20 carbon atoms (including substituted aryls). More preferably, the three groups are alkyls having 1 to 4 carbon groups, phenyl, naphthyl, or mixtures thereof. Even more preferably, the three groups are halogenated, preferably fluorinated, aryl groups. 20 Preferably, the neutral stoichiometric activator is tris perfluorophenyl boron or tris perfluoronaphthyl boron. Ionic Stoichiometric Activators Ionic stoichiometric activators may contain an active proton, or some other cation associated with, but not coordinated 25 to, or only loosely coordinated to, the remaining anion of the activator. Such compounds and the like are described in EP 0 570 982 A; EP 0 520 732 A; EP 0 495 375 A; EP 0 500 944 B 1; EP 0 277 003 A; EP 0 277 004 A; U.S. Pat. Nos. 5,153,157; 5,198,401; 5,066,741; 5,206,197; 5,241,025; 5,384,299; and 30 5,502,124; all of which are herein fully incorporated by reference Ionic stoichiometric activators comprise a cation, which is preferably a Bronsted acid capable of donating a proton, and a compatible non-coordinating anion. Preferably, the anion is 35 relatively large (bulky), capable of stabilizing the catalytically active species (preferably a group 4 catalytically active species) which is formed when the catalyst (such as a metallocene compound) and the stoichiometric activator are combined. Preferably, the anion will be sufficiently labile to be 40 displaced by olefinic, diolefinic and acetylenically unsaturated substrates or other neutral Lewis bases, such as ethers, amines, and the like. Two classes of useful compatible noncoordinating anions have been disclosed in EP 0 277,003 A and EP 0 277,004 A: 1) anionic coordination complexes com- 45 prising a plurality of
lipophilic radicals covalently coordinated to and shielding a central charge-bearing metal or metalloid core, and 2) anions comprising a plurality of boron atoms, such as carboranes, metallacarboranes, and boranes. In a preferred embodiment of this invention, the ionic 50 stoichiometric activators are represented by the following formula (1): $$(Z)_d^+ A^{d-}$$ (1) wherein $(Z)_d^+$ is the cation component and A^{d^-} is the anion 55 component; where Z is (L-H) or a reducible Lewis Acid, L is an neutral Lewis base; H is hydrogen; $(L-H)^+$ is a Bronsted acid; A^{d^-} is a non-coordinating anion having the charge d^- ; and d is an integer from 1 to 3. When Z is (L-H) such that the cation component is $(L-H)_a^+$, 60 the cation component may include Bronsted acids such as protonated Lewis bases capable of protonating a moiety, such as an alkyl or aryl, from the bulky ligand metallocene containing transition metal catalyst precursor, resulting in a cationic transition metal species. Preferably, the activating cation $(L-H)_a^+$ is a Bronsted acid, capable of donating a proton to the transition metal catalytic precursor resulting in a transi- 24 tion metal cation, including ammoniums, oxoniums, phosphoniums, silyliums, and mixtures thereof, preferably ammoniums of methylamine, aniline, dimethylamine, diethylamine, N-methylaniline, diphenylamine, trimethylamine, triethylamine, N,N-dimethylaniline, methyldiphenylamine, pyridine, p-bromo N,N-dimethylaniline, p-nitro-N, N-dimethylaniline, phosphoniums from triethylphosphine, triphenylphosphine, and diphenylphosphine, oxoniums from ethers, such as dimethyl ether diethyl ether, tetrahydrofuran, and dioxane, sulfoniums from thioethers, such as diethyl thioethers and tetrahydrothiophene, and mixtures thereof. When Z is a reducible Lewis acid, $(Z)_d^+$ is preferably represented by the formula: $(Ar_3C)^+$, where Ar is aryl or aryl substituted with a heteroatom, a C_1 to C_{40} hydrocarbyl, or a substituted C_1 to C_{40} hydrocarbyl, preferably $(Z)_d^+$ is represented by the formula: $(Ph_3C)^+$, where Ph is phenyl or phenyl substituted with a heteroatom, a C_1 to C_{40} hydrocarbyl, or a substituted C_1 to C_{40} hydrocarbyl. In a preferred embodiment, the reducible Lewis acid is triphenyl carbenium. The anion component A^{d-} includes those having the formula $[M^{k+}Q_n]^{d-}$ wherein k is 1, 2, or 3; n is 1, 2, 3, 4, 5, or 6, preferably 3, 4, 5 or 6; (n-k)=d; M is an element selected from group 13 of the Periodic Table of the Elements, preferably boron or aluminum; and each Q is, independently, a hydride, bridged or unbridged dialkylamido, halide, alkoxide, aryloxide, hydrocarbyl, substituted hydrocarbyl, halocarbyl, substituted halocarbyl, and halosubstituted-hydrocarbyl radicals, said Q having up to 20 carbon atoms with the proviso that in not more than one occurrence is Q a halide, and two Q groups may form a ring structure. Preferably, each Q is a fluorinated hydrocarbyl group having 1 to 20 carbon atoms, more preferably each Q is a fluorinated aryl group, and most preferably each Q is a pentafluoryl aryl group. Examples of suitable A^d components also include diboron compounds as disclosed in U.S. Pat. No. 5,447,895, which is fully incorporated herein by In other embodiments of this invention, the ionic stoichiometric activator may be an activator comprising expanded anions, represented by the formula: $$(A^{*+a})_b(Z^*J^*_i)^{-c}_{d};$$ wherein A* is a cation having charge +a; Z* is an anion group of from 1 to 50 atoms not counting hydrogen atoms, further containing two or more Lewis base sites; J* independently each occurrence is a Lewis acid coordinated to at least one Lewis base site of Z*, and optionally two or more such J* groups may be joined together in a moiety having multiple Lewis acid functionality; j is a number from 2 to 12; and a, b, c, and d are integers from 1 to 3, with the proviso that axb is equal to cxd. Examples of such activators comprising expandable anions may be found in U.S. Pat. No. 6,395,671, which is fully incorporated herein by reference. Examples of ionic stoichiometric activators useful in the catalyst system of this invention are: trimethylammonium tetraphenylborate, triethylammonium tetraphenylborate, tripropylammonium tetraphenylborate, tri (n-butyl)ammonium tetraphenylborate, tri (t-butyl)ammonium tetraphenylborate, tri(t-butyl)ammonium tetraphenylborate, N,N-dimethylanilinium tetraphenylborate, N,N-dimethyl-(2,4,6-trimethylanilinium)tetraphenylborate, tropillium tetraphenylborate, triphenylcarbenium tetraphenylborate, triphenylphosphonium tetraphenylborate triethylsilylium tetraphenylborate, benzene(diazonium)tetraphenylborate, trimethylammonium tetrakis(pentafluorophenyl) borate, tripropylammonium tetrakis(pentafluorophenyl) borate, tri(n-butyl)ammonium tetrakis(pentafluorophenyl) 25 borate, tri(sec-butyl)ammonium tetrakis(pentafluorophenyl) borate, N,N-dimethylanilinium tetrakis(pentafluorophenyl) 26 borate, N,N-diethylanilinium tetrakis(pentafluorophenyl) N,N-dimethyl-(2,4,6-trimethylanilinium)tetrakis borate. tropillium (pentafluorophenyl)borate, tetrakis (pentafluorophenyl)borate, triphenylcarbenium tetrakis (pentafluorophenyl)borate, triphenylphosphonium tetrakis (pentafluorophenyl)borate, triethylsilylium tetrakis (pentafluorophenyl)borate, benzene(diazonium)tetrakis (pentafluorophenyl)borate, trimethylammonium tetrakis-(2, 10 3,4,6-tetrafluorophenyl)borate, triethylammonium tetrakis-(2,3,4,6-tetrafluorophenyl)borate, tripropylammonium tetrakis-(2,3,4,6-tetrafluorophenyl)borate, tri(n-butyl)ammonium tetrakis-(2,3,4,6-tetrafluoro-phenyl)borate, dimethyl(t-butyl)ammonium tetrakis-(2,3,4,6-tetrafluorophenyl) N,N-dimethylanilinium tetrakis-(2,3,4,6borate. tetrafluorophenyl)borate, N,N-diethylanilinium tetrakis-(2,3, 4,6-tetrafluorophenyl)borate, N,N-dimethyl-(2,4,6trimethylanilinium)tetrakis-(2,3,4,6-tetrafluorophenyl) borate, tropillium tetrakis-(2.3.4.6-tetrafluorophenyl)borate, 20 triphenylcarbenium tetrakis-(2,3,4,6-tetrafluorophenyl)borate, triphenylphosphonium tetrakis-(2,3,4,6-tetrafluorophenyl)borate, triethylsilylium tetrakis-(2,3,4,6-tetrafluorophenyl)borate, benzene(diazonium)tetrakis-(2,3,4,6tetrafluorophenyl)borate, trimethylammonium tetrakis 25 (perfluoronaphthyl)borate, triethylammonium tetrakis (perfluoronaphthyl)borate, tripropylammonium tetrakis (perfluoronaphthyl)borate, tri(n-butyl)ammonium tetrakis (perfluoronaphthyl)borate, tri(t-butyl)ammonium tetrakis (perfluoronaphthyl)borate, N,N-dimethylanilinium tetrakis 30 where: (perfluoronaphthyl)borate, N,N-diethylanilinium tetrakis (perfluoronaphthyl)borate, N,N-dimethyl-(2,4,6trimethyl anilinium) tetrak is (perfluor on a phthyl) borate,tropillium tetrakis(perfluoronaphthyl)borate, triphenylcarbenium tetrakis(perfluoronaphthyl)borate, triphenylphospho- 35 nium tetrakis(perfluoronaphthyl)borate, triethylsilylium tetrakis(perfluoronaphthyl)borate, benzene(diazonium)tetrakis (perfluoronaphthyl)borate, trimethylammonium tetrakis (perfluorobiphenyl)borate, triethylammonium tetrakis (perfluorobiphenyl)borate, tripropylammonium tetrakis 40 (perfluorobiphenyl)borate, tri(n-butyl)ammonium tetrakis (perfluorobiphenyl)borate, tri(t-butyl)ammonium tetrakis (perfluorobiphenyl)borate, N,N-dimethylanilinium tetrakis (perfluorobiphenyl)borate, N,N-diethylanilinium tetrakis (perfluorobiphenyl)borate, N,N-dimethyl-(2,4,6-45 trimethylanilinium) tetrak is (perfluor obiphenyl) borate,tropillium tetrakis(perfluorobiphenyl)borate, triphenylcarbenium tetrakis(perfluorobiphenyl)borate, triphenylphosphonium tetrakis(perfluorobiphenyl)borate, triethylsilylium tetrakis(perfluorobiphenyl)borate, benzene(diazonium)tetrakis 50 (perfluorobiphenyl)borate, trimethylammonium tetrakis(3,5bis(trifluoromethyl)phenyl)borate, triethylammonium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate, tripropylammonium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate, tri (n-butyl)ammonium tetrakis(3,5-bis(trifluoromethyl)phe-55 tri(t-butyl)ammonium nyl)borate, tetrakis(3,5-bis (trifluoromethyl)phenyl)borate, N,N-dimethylanilinium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate, N,N-diethytetrakis(3,5-bis(trifluoromethyl)phenyl)borate, N,N-dimethyl-(2,4,6-trimethylanilinium)tetrakis(3,5-bis(tri-60 fluoromethyl)phenyl)borate, tropillium tetrakis(3,5-bis(trif- luoromethyl)phenyl)borate, triphenylcarbenium tetrakis(3,5- bis(trifluoromethyl)phenyl)borate, triphenylphosphonium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate, triethylsily- (diazonium)tetrakis(3,5-bis(trifluoromethyl)phenyl)borate, and dialkyl ammonium salts such as: di-(i-propyl)ammonium lium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate, benzene 65 tetrakis(pentafluorophenyl)borate, and dicyclohexylammonium tetrakis(pentafluorophenyl)borate; and additional trisubstituted phosphonium salts such as tri(o-tolyl)phosphotetrakis(pentafluorophenyl)borate, and dimethylphenyl)phosphonium tetrakis(pentafluorophenyl) Most preferably, the ionic stoichiometric activator is N.Ndimethylanilinium tetrakis(perfluoronaphthyl)borate, N,Ndimethylanilinium tetrakis(perfluorobiphenyl)borate, N,Ndimethylanilinium tetrakis(3,5-bis(trifluoromethyl)phenyl) borate, triphenylcarbenium tetrakis(perfluoronaphthyl) borate, triphenylcarbenium tetrakis(perfluorobiphenyl) borate, triphenylcarbenium tetrakis(3,5-bis(trifluoromethyl) phenyl)borate, triphenylcarbenium or (perfluorophenyl)borate. **Bulky Ionic Stoichiometric Activators** "Bulky activator" as used herein refers to ionic stoichiometric activators represented by the formula: $$(Z)_d^+$$ B⁻ R_1 R_2 R_3 R_1 R_2 each R₁ is, independently, a halide, preferably a fluoride; each R₂ is, independently, a halide, a C₆ to C₂₀ substituted aromatic hydrocarbyl group or a siloxy group of the formula —O—Si— R_a , where R_a is a C_1 to C_{20} substituted or unsubstituted hydrocarbyl or hydrocarbylsilyl group (preferably R₂ is a fluoride or a perfluorinated phenyl group); each R₃ is a
halide, C₆ to C₂₀ substituted aromatic hydrocarbyl group or a siloxy group of the formula —O—Si—R_a, where R_a is a C₁ to C₂₀ substituted or unsubstituted hydrocarbyl or hydrocarbylsilyl group (preferably R₃ is a fluoride or a C₆ perfluorinated aromatic hydrocarbyl group); wherein R₂ and R₃ can form one or more saturated or unsaturated, substituted or unsubstituted rings (preferably R₂ and R₃ form a perfluorinated phenyl ring); $(Z)_d^+$ is the cation component; where Z is (L-H) or a reducible Lewis Acid, L is an neutral Lewis base; H is hydrogen; (L-H)+ is a Bronsted acid; and d is an integer from 1 to 3; wherein the boron anion component has a molecular weight of greater than 1020 g/mol; and wherein at least three of the substituents on the B atom each have a molecular volume of greater than 250 cubic Å, alternately greater than 300 cubic Å, or alternately greater than 500 cubic Å. "Molecular volume" is used herein as an approximation of spatial steric bulk of an activator molecule in solution. Comparison of substituents with differing molecular volumes allows the substituent with the smaller molecular volume to be considered "less bulky" in comparison to the substituent with the larger molecular volume. Conversely, a substituent with a larger molecular volume may be considered "more bulky" than a substituent with a smaller molecular volume. Molecular volume may be calculated as reported in "A Simple 'Back of the Envelope' Method for Estimating the Densities and Molecular Volumes of Liquids and Solids," Journal of Chemical Education, Vol. 71, No. 11, November 1994, pp. 962-964. Molecular volume (MV), in units of cubic Å, is calculated using the formula: $MV=8.3V_s$, where V_s is the scaled volume. V_s is the sum of the relative volumes of the constituent atoms and is calculated from the molecular formula of the substituent using the following table of relative volumes. For fused rings, the ${\rm V}_s$ is decreased by 7.5% per fused ring. | Element | Relative Volume | |----------------------------|-----------------| | Н | 1 | | 1st short period, Li to F | 2 | | 2nd short period, Na to Cl | 4 | | 1st long period, K to Br | 5 | | 2nd long period, Rb to I | 7.5 | | 3rd long period, Cs to Bi | 9 | Exemplary bulky substituents of activators suitable herein and their respective scaled volumes and molecular volumes are shown in the table below. The dashed bonds indicate binding to boron, as in the general formula above. 28 tropillium tetrakis(perfluoronaphthyl)borate, triphenylcarbenium tetrakis(perfluoronaphthyl)borate, triphenylphosphonium tetrakis(perfluoronaphthyl)borate, triethylsilylium tetrakis(perfluoronaphthyl)borate, benzene(diazonium)tetrakis (perfluoronaphthyl)borate, trimethylammonium tetrakis (perfluorobiphenyl)borate, triethylammonium tetrakis (perfluorobiphenyl)borate. tripropylammonium tetrakis (perfluorobiphenyl)borate, tri(n-butyl)ammonium tetrakis (perfluorobiphenyl)borate, tri(t-butyl)ammonium tetrakis (perfluorobiphenyl)borate, N,N-dimethylanilinium tetrakis (perfluorobiphenyl)borate, N,N-diethylanilinium tetrakis (perfluorobiphenyl)borate, N,N-dimethyl-(2,4,6trimethylanilinium)tetrakis(perfluorobiphenyl)borate, tropillium tetrakis(perfluorobiphenyl)borate, triphenylcarbenium tetrakis(perfluorobiphenyl)borate, triphenylphosphonium tetrakis(perfluorobiphenyl)borate, triethylsilylium tetrakis(perfluorobiphenyl)borate, benzene(diazonium)tetrakis | Activator | Structure of boron substituents | Molecular
Formula
of each
substituent | V_s | MV
Per
subst.
(ų) | Total
MV
(ų) | |--|--|--|-------|----------------------------|--------------------| | Dimethylanilinium
tetrakis(perfluoronaphthyl)borate | $\begin{bmatrix} F & F \\ F & F \end{bmatrix}_4$ | C ₁₀ F ₇ | 34 | 261 | 1044 | | Dimethylanilinium
tetrakis(perfluorobiphenyl)borate | $\begin{bmatrix} F & F & F \\ F & F & F \end{bmatrix}_4$ | C ₁₂ F ₉ | 42 | 349 | 1396 | | [4-tButyl—PhNMe ₂ H]
[(C ₆ F ₃ (C ₆ F ₅) ₂) ₄ B] | F F F F A | C ₁₈ F ₁₃ | 62 | 515 | 2060 | Exemplary bulky ionic stoichiometric activators useful in catalyst systems herein include: trimethylammonium tetrakis (perfluoronaphthyl)borate, triethylammonium tetrakis(perfluoronaphthyl)borate, triin-butyl)ammonium tetrakis (perfluoronaphthyl)borate, triin-butyl)ammonium tetrakis (perfluoronaphthyl)borate, triin-butyl)ammonium tetrakis (perfluoronaphthyl)borate, N,N-dimethylanilinium tetrakis (perfluoronaphthyl)borate, N,N-dimethylanilinium tetrakis (perfluoronaphthyl)borate, N,N-dimethylanilinium tetrakis (perfluoronaphthyl)borate, triin-butylanilinium)tetrakis (perfluoronaphthyl)borate, triin-butylanilinium)tetrakis(perfluoronaphthyl)borate, triin-butylanilinium)tetrakis(perfluoronaphthyl)borate, triin-butylanilinium)tetrakis(perfluoronaphthyl)borate, triin-butylanilinium)tetrakis(perfluoronaphthyl)borate, triin-butylanilinium)tetrakis(perfluoronaphthyl)borate, triin-butylanilinium tetrakis (perfluoronaphthyl)borate, tetrak (perfluorobiphenyl)borate, [4-t-butyl-PhNMe $_2$ H][(C_6F_3)(C_6F_5) $_2$)4B], (where Ph is phenyl and Me is methyl), and the types disclosed in U.S. Pat. No. 7,297,653. In another embodiment of this invention, an activation method using ionic compounds not containing an active proton but capable of producing a bulky ligand metallocene catalyst cation and their non-coordinating anion are also contemplated, and are described in EP 0 426 637 A, EP 0 573 403 A, and U.S. Pat. No. 5,387,568, which are all herein incorporated by reference. In another embodiment of this invention, inventive processes also can employ stoichiometric activator compounds that are initially neutral Lewis acids but form a cationic metal complex and a noncoordinating anion, or a zwitterionic complex upon reaction with the metallocene compounds. For example, tris(pentafluorophenyl) boron or aluminum may act to abstract a hydrocarbyl or hydride ligand to yield an invention cationic metal complex and stabilizing noncoordinating anion, see EP 0 427 697 A and EP 0 520 732 A for illustrations of analogous group 4 metallocene compounds. Also, see the methods and compounds of EP 0 495 375 A. For formation of zwitterionic complexes using analogous group 4 compounds, see U.S. Pat. Nos. 5,624,878; 5,486,632; and 5,527,929. In another embodiment of this invention, another suitable ionic stoichiometric activator comprises a salt of a cationic oxidizing agent and a noncoordinating, compatible anion represented by the formula: $$(X^{e+})_d(A^{d-})_e$$ (3) wherein X^{e+} is a cationic oxidizing agent having a charge of e+; e is 1, 2, or 3; A^{d-} is a non-coordinating anion having the charge d-; and d is 1, 2, or 3. Examples of X^{e+} include: ferrocenium, hydrocarbyl-substituted ferrocenium, Ag^+ , or Pb^{+2} . Preferred embodiments of A^{d-} are those anions previously defined with respect to the Bronsted acid containing activators, especially tetrakis(pentafluorophenyl)borate. Activator Combinations It is within the scope of this invention that metallocene compounds can be combined with one or more activators or 30 activation methods described above. For example, a combination of activators have been described in U.S. Pat. Nos. 5,153,157; 5,453,410; European Publication No. EP 0 573 120 B 1; WO 94/07928; and WO 95/14044. These documents all discuss the use of an alumoxane in combination with a 35 stoichiometric activator. In another embodiment, the vinyl terminated macromonomer may be a vinyl terminated ethylene macromonomer. In some embodiments, a phenoxyimine-based catalyst (a Mitsui FI catalyst) or a pyrroleimine-based catalyst (a Mitsui PI 40 catalyst) can be used to prepare the vinyl terminated ethylene macromonomer. These catalysts comprise (a) a transition metal (preferably Ti) compound having phenoxyimine or pyrroleimine as a ligand, and (b) one or more kind(s) of compound selected from (b-1) an organic metal compound, 45 (b-2) an organic aluminumoxy compound, and (b-3) a compound that reacts with the transition metal compound (a) to form an ion pair, as described in JP-A-2001-72706, JP-A-2002-332312, JP-A-2003-313247, JP-A-2004-107486, and JP-A-2004-107563. Herein, as the transition metal contained 50 in the transition metal compound, the transition metal of Groups 3 to 11 in the periodic table can be used. Preferred catalysts to prepare the vinyl terminated ethylene macromonomer include those described in U.S. Pat. No. 7,795, 347, specifically at column 16, line 56 et seq. in Formula (XI). 55 In another embodiment, the vinyl terminated macromonomer may be a vinyl terminated isotactic polypropylene or a vinyl terminated polyethylene as disclosed in U.S. Pat. Nos. 6,444,773; 6,555,635; 6,147,180; 6,660,809; 6,750,307; 6,774,191; 6,169,154; EP 0 958 309, which are incorporated 60 by reference herein. In a preferred embodiment, any vinyl terminated macromonomer described herein can be fractionated or distilled by any means know in the art and one or more of the fractions may be used in the invention described herein. Preferred 65 fractions typically have a narrow Mw/Mn, such as less than 1.5, preferably 1.4 or less, preferably 1.3 or less, preferably 1.2 or less. Alternately the Mw/Mn is from 1 to 1.4, preferably 1.05 to 1.3, preferably 1.1 to 1.2. In another embodiment of the invention, the fractions have a narrow boiling point range (as determined by ASTM D86) of less than 70° C., preferably less than 60° C., preferably less than 50° C., preferably less than 40° C., preferably less than 30° C., preferably less than 20° C., preferably less than 10° C. In a preferred embodiment of the invention, the vinyl terminated macromonomer injected into a gas
chromatograph column to determine the optimum cut points for the fractionation In a preferred embodiment, the fractions may be obtained by separation of the vinyl terminated macromonomer product such as by the processes described in GB 1550419A; U.S. Pat. Nos. 3,647,906; and 3,592,866. Useful fractions include ranges from about 4 carbon-numbers up to 20 carbon-numbers, e.g., C_4 - C_8 , C_4 - C_{14} , C_4 - C_{20} . The lower α -olefin fraction may contain α -olefins having the same carbon-number as the lowest α -olefin in the higher α -olefin fraction, but preferably contains only α-olefins of carbon-numbers lower than the carbon-number of the lowest α -olefin in the higher α -olefin fraction. The higher (α -olefin fraction may include α -olefins of the same carbon number as the highest α -olefin in the lower α -olefin fraction up to the highest α -olefin produced in the reaction, but generally not higher than C₄₀. Preferably, however, the higher α -olefin fraction contains only (α -olefins of carbon-numbers higher than the carbon number of the highest α -olefin in the lower α -olefin fraction. In a separation where an $\alpha\text{-olefin}$ product mixture free of light oligomers, e.g., dimers, trimers, tetramers, etc., is desired, the lower $\alpha\text{-olefin}$ fraction is further separated into a light $\alpha\text{-olefin}$ fraction and an intermediate $\alpha\text{-olefin}$ fraction. The light $\alpha\text{-olefin}$ fraction may include from C_4 up to $C_{12},$ e.g., $C_4\text{-}C_6, C_4\text{-}C_8, C_4\text{-}C_{10},$ etc. In this modification, the intermediate $\alpha\text{-olefin}$ fraction is removed as product and the light $\alpha\text{-olefin}$ fraction is converted to additional intermediate $\alpha\text{-olefins}.$ In another embodiment, any vinyl terminated macromonomer described herein can be separated into different boiling point cuts by distillation performed according to the procedures described in ASTM methods D2892 and D5236. (D2892: Standard Test Method for Distillation of Crude Petroleum (15-Theoretical Plate Column) and D5236: Standard Test Method for Distillation of Heavy Hydrocarbon Mixtures (Vacuum Potstill Method). For example a low molecular weight atactic polypropylene VTM (677.3 gram charge) can be fractionated or distilled using the boiling point range, mass recovery, vacuum conditions listed below. Both initial boiling point (IBP) and final boiling point (FBP) are in degree Fahrenheit (° F.) and corrected to atmospheric pressure, shown in the Table below: | Fraction
(Cut)# | Initial
boiling
point/IBP
(° F.) | Final
boiling
point/FBP
(° F.) | Weight of
collected
fraction
(grams) | Still
pressure
(mmHg) | ASTM
method
used | |--------------------|---|---|---|-----------------------------|------------------------| | Charge | _ | _ | 677.3 | | | | (Feed) | | | | | | | 1 | IBP | 140 | 3.8 | 760 | D2892 | | 2 | 140 | 160 | 11.9 | 760 | D2892 | | 3 | 160 | 265 | 27.8 | 760 | D2892 | | 4 | 265 | 365 | 35.0 | 88 | D2892 | | 5 | 365 | 465 | 46.6 | 88 | D2892 | | 6 | 465 | 525 | 34.4 | 88 | D2892 | | 7 | 525 | 568 | 44.0 | 10 | D2892 | | 8 | 568 | 588 | 14.2 | 10 | D2892 | | 9 | 588 | 645 | 53.1 | 10 | D2892 | | | | | | | | | Fraction
(Cut)# | Initial
boiling
point/IBP
(° F.) | Final
boiling
point/FBP
(° F.) | Weight of
collected
fraction
(grams) | Still
pressure
(mmHg) | ASTM
method
used | |-------------------------|---|---|---|-----------------------------|------------------------| | 10 | 645 | 700 | 63.4 | 2 | D2892 | | 11 | 700 | 844 | 41.2 | 0.2 | D5236 | | 12 | 844 | 892 | 42.3 | 0.2 | D5236 | | 13 | 892 | 904 | 17.9 | 0.2 | D5236 | | Distillation
Bottoms | 904+ | _ | 226.6 | _ | _ | As shown in the Table above, total recovery of collected fractions (fraction 1 to 13) with boiling points between 25° C. and 904° F. was 435.6 g (64.3 wt % of initial charge). Total recovery of distillation bottoms with boiling point above 904° F. was 226.6 g (33.5 wt % of initial charge). The total recovery of both distilled fractions and bottoms material amounts to 97.8 wt %. The resulting distilled fractions and distillation bottoms have narrow molecular weight distributions (Mw/ Mn less than 1.4) as determined by GPC. In another embodiment of the invention, the vinyl terminated macromonomer (preferably a propylene based vinyl terminated macromonomer, preferably a homopolypropy- 25 lene vinyl terminated macromonomer) has less than 1 mol % regio defects (as determined by 13C NMR), based upon the total propylene monomer. Three types of defects are defined to be the regio defects: 2,1-erythro, 2,1-threo, and 3,1-isomerization. The structures and peak assignments for these are 30 given in L. Resconi, L. Cavallo, A. Fait, and F. Piemontesi, Chem. Rev. 2000, 100, pp. 1253-1345, as well as H. N. Cheng, Macromolecules, 17, p. 1950 (1984). Alternately, the vinyl terminated macromonomer (preferably a propylene vinyl terminated macromer, preferably a homopolypropylene vinyl terminated macromonomer) has less than 250 regio defects per 10,000 monomer units (as determined by ¹³C NMR), preferably less than 150, preferably less than 100, preferably less than 50 regio defects per 10,000 monomer units. The regio defects each give rise to multiple peaks in the carbon NMR spectrum, and these are all integrated and averaged (to the extent that they are resolved from other peaks in the spectrum), to improve the measurement accuracy. The chemical shift offsets of the resolvable resonances used in the analysis are tabulated below. The precise peak positions may shift as a function of NMR solvent choice. | Regio defect | Chemical shift range (ppm) | |---------------|--| | 2,1-erythro | 42.3, 38.6, 36.0, 35.9, 31.5, 30.6, 17.6, 17.2 | | 2,1-threo | 43.4, 38.9, 35.6, 34.7, 32.5, 31.2, 15.4, 15.0 | | 3,1 insertion | 37.6, 30.9, 27.7 | The average integral for each defect is divided by the integral for one of the main propylene signals ($\mathrm{CH_3}$, CH , $\mathrm{CH_2}$), and multiplied by 10000 to determine the defect concentration per 10000 monomers. In another embodiment, any vinyl terminated macromonomer described herein may have a melting point (DSC first melt) of from 60° C. to 160° C., alternately 50° C. to 145° C., alternately 50° C. to 100° C. In another embodiment, the vinyl terminated macromonomer described herein have no detectable melting point by DSC 65 following storage at ambient temperature (23° C.) for at least 48 hours. 32 In another embodiment, the vinyl terminated macromonomer described herein may have a glass transition temperature of less than 0° C. or less (DSC), preferably -10° C. or less, more preferably -20° C. or less, more preferably -30° C. or less, more preferably -50° C. or less. Melting temperature (T_m) and glass transition temperature (Tg) are measured using Differential Scanning calorimetry (DSC) using commercially available equipment such as a TA Instruments 2920 DSC. Typically, 3 to 10 mg of the sample, that has been stored at 25° C. for at least 48 hours, is sealed in an aluminum pan and loaded into the instrument at 25° C. The sample is equilibrated at 25° C., then it is cooled at a cooling rate of 10° C./min to -80° C. The sample is held at -80° C. for 5 min and then heated at a heating rate of 10° C./min to 25° C. The glass transition temperature is measured from the heating cycle. Alternatively, the sample is equilibrated at 25° C., then heated at a heating rate of 10° C./min to 150° C. The endothermic melting transition, if present, is analyzed for onset of transition and peak temperature. The melting temperatures reported are the peak melting temperatures from the first heat unless otherwise specified. For samples displaying multiple peaks, the melting point (or melting temperature) is defined to be the peak melting temperature (i.e., associated with the largest endothermic calorimetric response in that range of temperatures) from the DSC melting trace. In another embodiment, the vinyl terminated macromonomers described herein are a liquid at 25° C. In a particularly preferred embodiment of the invention, the vinyl terminated macromonomer (preferably comprising propylene, at least 50 mol % propylene, preferably at least 70 propylene) has less than 250 regio defects per 10,000 monomer units, preferably less than 150, preferably less than 100, preferably less than 50 regio defects per 10,000 monomer units and a Tg of less than 0° C. or less (DSC), preferably –10° C. or less, more preferably –20° C. or less, more preferably –50° C. or less. In another embodiment, the vinyl terminated macromonomers described herein have a viscosity at 60° C. of greater than 1000 cP, greater than 12,000 cP, or greater than 100,000 cP. In other embodiments, the vinyl terminated macromonomer have a viscosity of less than 200,000 cP, less than 150,000 cP, or less than 100,000 cP. Viscosity is defined as resistance to flow and the melt viscosity of neat copolymers is measured at elevated temperature using a Brookfield Digital Viscometer. In another embodiment, the VTM described herein also has a viscosity (also referred to a Brookfield Viscosity or Melt Viscosity) of 90,000 mPa·sec or less at 190° C. (as measured by ASTM D 3236 at 190° C.; ASTM=American Society for Testing and Materials); or 80,000 mPa·sec or less, or 70,000 mPa·sec or less, or 60,000 mPa·sec or less, or 50,000 mPa·sec or less, or 40,000 mPa·sec or less, or
30,000 mPa·sec or less, or 20,000 mPa·sec or less, or 10,000 mPa·sec or less, or 8,000 mPa·sec or less, or 5,000 mPa·sec or less, or 4,000 mPa·sec or less, or 3,000 mPa·sec or less, or 1,500 mPa·sec or less, or between 250 and 6,000 mPa·sec, or between 500 and 5,500 mPa·sec, or between 500 and 3,000 mPa·sec, or between 500 $\,$ and 1,500 mPa·sec, and/or a viscosity of 8,000 mPa·sec or less at 160° C. (as measured by ASTM D 3236 at 160° C.); or 7,000 mPa·sec or less, or 6,000 mPa·sec or less, or 5,000 mPa·sec or less, or 4,000 mPa·sec or less, or 3,000 mPa·sec or less, or 1,500 mPa·sec or less, or between 250 and 6,000 mPa·sec, or between 500 and 5,500 mPa·sec, or between 500 and 3,000 mPa·sec, or between 500 and 1,500 mPa·sec. In other embodiments, the viscosity is 200,000 mPa·sec or less at 190° C., depending on the application. In other embodiments, the viscosity is 50,000 mPa·sec or less depending on the applications. Process to Functionalize Polyolefins This invention relates to a process to functionalize polyolefins comprising contacting an amine and one or more vinyl terminated macromonomers that have been hydroformylated with carbon monoxide. In some embodiments, a dehydrating agent may be used to remove the H₂O byproduct. Sometimes an acid catalyst is used such as p-toluenesulfonic acid to aid in the dehydration, other Bronsted acids then could be useful, usually such are more useful with ketones-not aldehydes but they are potentially useful with secondary amines Alternatively, the hydroaminated product may form a salt with a acidic compound, such as HCl, HBr, HI, sulfuric acid. The reactants are typically combined in a reaction vessel at a temperature of -50° C. to 300° C. (preferably 25° C., preferably 150° C.). Likewise, the reactants are typically combined at a pressure of 0 to 1000 MPa (preferably 0.5 to 500 MPa, preferably 1 to 250 MPa) for a residence time of 0.5 20 seconds to 10 hours (preferably 1 second to 10 hours, preferably 1 minute to 100 hours. Typically, from about 100 to about 0.1 (e.g., 50 to 0.2), preferably from about 25 to about 0.35, and most preferably from about 4 to about 0.5 moles of the amine reagent are 25 charged to the reactor per mole of carbonyl containing VTM charged. The process is typically a solution process, although it may be a bulk or high pressure process. Homogeneous processes are preferred. (A homogeneous process is defined to be a 30 process where at least 90 wt % of the product is soluble in the reaction media.) A bulk homogeneous process is particularly preferred. (A bulk process is defined to be a process where reactant concentration in all feeds to the reactor is 70 vol % or more.) Alternately, no solvent or diluent is present or added in 35 the reaction medium, (except for the small amounts used as the carrier for the catalyst or other additives, or amounts typically found with the reactants; e.g., propane in propylene). Suitable diluents/solvents for the process include non-co-ordinating, inert liquids. Examples include straight and branched-chain hydrocarbons such as isobutane, butane, pentane, isopentane, hexanes, isohexane, heptane, octane, dodecane, and mixtures thereof; cyclic and alicyclic hydrocarbons such as cyclohexane, cycloheptane, methylcyclohexane, 45 methylcycloheptane, and mixtures thereof such as can be found commercially (IsoparTM); perhalogenated hydrocarbons such as perfluorinated C_{4-10} alkanes, chlorobenzene, and aromatic and alkylsubstituted aromatic compounds such as benzene, toluene, mesitylene, and xylene. In a preferred 50 embodiment, the feed concentration for the process is 60 vol % solvent or less, preferably 40 vol % or less, preferably 20 vol % or less. The process may be batch, semi-batch, or continuous. As used herein, the term continuous means a system that operates 55 without interruption or cessation. For example, a continuous process to produce a polymer would be one where the reactants are continually introduced into one or more reactors and polymer product is continually withdrawn. Useful reaction vessels include reactors, including continuous stirred tank reactors, batch reactors, reactive extruder, pipe or pump. This invention further relates to a process, preferably an in-line process, preferably a continuous process, to produce functionalized polyolefins, comprising introducing a mac- 65 romonomer, a catalyst system, carbon monoxide/hydrogen and an amine into a reactor, obtaining a reactor effluent con- 34 taining functionalized terminated polyolefin, optionally removing (such as flashing off) solvent, unused monomer and/or other volatiles, obtaining functionalized vinyl terminated polyolefin (such as those described herein). Preferably this invention relates to an in-line process, preferably a continuous process, to produce functionalized polyolefins, comprising introducing vinyl terminated polyolefin, catalyst (as described herein), carbon monoxide/hydrogen and an amine compound (as described herein) into a reaction zone (such as a reactor, an extruder, a pipe and/or a pump) and obtaining functionalized polyolefin (such as those described herein). Aldehydes are synthesized by the hydroformylation of vinyl terminated macromonomers in high yield and purity. Hydroformylation known in the literature and common transition metal complexes employ Rh, Co and other metals. A preferred catalyst used herein was Rh(Acac)₃ with added P(Ph)₃ which yielded about 90% 1-aldehyde with the remainder being 2-aldehydes and some alcohol by-product. The aldehydes are further reacted in a one-pot reaction to yield, for example, an alkyldiamine, e.g., ethylenediamine terminated polyolefin molecules at low temperatures and short reaction times. The alcohol does not interfere with these reactions. The aldehydes used in the present invention may also be produced by other methods and are not limited to the hydroformylation procedure. Hydroformylated VTM's can be prepared by the methods disclosed in copending U.S. Ser. No. 61/704,639, filed Sep. 24, 2012 entitled "Catalytic Hydroformylation of Vinyl Terminated Polyolefins," identified by Attorney Docket Number 2012EM283, and incorporated by reference herein. Catalysts The hydroformylation reaction, also known as the oxo reaction, is used extensively in commercial processes for the preparation of aldehydes by the reaction of one mole of an olefin with one mole each of hydrogen and carbon monoxide. A catalyst system containing a Group VIII metal, such as rhodium or cobalt, is used to catalyze the oxo process. In addition, a phosphorus ligand such as halophosphites, phosphites, and phosphines can be used to regulate the activity of the Group VIII metal. Hydroformylation catalysts are known by those having ordinary skill in the art and include, for example, $HCo(CO)_3$ and $HRh(CO)(PPh_3)_2$. Typically, the ligand tributylphosphine (PBu₃) is added to the reaction mixture to help improve yields. Amines Amines include ammonia (NH $_3$), primary and secondary alkyl or aryl amines and quaternary salts thereof. The alkyl group can have a C $_1$ to a C $_2$ o carbon chain that can be linear, branched and or substituted. The carbon chain can further be substituted with heteroatoms, such as oxygen, sulfur, phosphorous or another nitrogen. Suitable alkyl or arylamines include, for example, ethyl amine, propyl amine, pentyl amine, hexyl amine, heptyl amine, benzyl amine, etc. The amines can be diamines or polyamines. Particularly suitable diamines are alkanediamines having from 6 to 12, in particular from 6 to 8, carbon atoms. Suitable diamines include ethylene diamine, propylene diamine, pentane diamine, hexylene diamine, etc. Examples of suitable amines are amine-terminated polyoxyalkylene polyols, examples being Jeffamines, such as 4,9-dioxadodecane-1,12-diamine and 4,7,10-trioxamidecane-1, 13-diamine, or amine-terminated polyoxyalkylene polyols, examples being amine-terminated polyethylene glycols, amine-terminated polypropylene glycols, or amine-terminated polybutylene glycols. The molar mass of the amines is preferably from 200 to 3000 g/mol. $$(CH_2)_n$$ N $(CH_2)_m$ \xrightarrow{x} wherein n is from 1 to about 12, m is from 1 to about 12, x is from 1 to about 100 and R_3 is a hydrogen atom, an aryl group, or an alkyl group, wherein the aryl group or alkyl group can include one or more heteroatoms. For example, triethylene tetramine (TETA), tetraethylene-pentamine (TEPA), pentaethylenehexamine, hexaethyleneheptamine, heavy polyamine bottoms, heavy polyamine X (HPA-X, Dow Chemical), pentane diamine, hexylene diamine, etc. are suitable amines. Polyethyleneimines, available from BASF (such as LUPASOL grades), having an Mn around 450 and much higher which are linear and/or branched structures or complex mixtures of linear, branched, and cyclic ethyleneamines, the structures of which can be deduced from the chemistry of manufacture and a knowledge of the structures present in TETA and TEPA. The structures of the principal components contain six or more nitrogen atoms per molecule. Major end-use applications include oil and fuel additives, corrosion inhibitors, and asphalt additives. Polyetheramines, also of interest, include those having the general formula: $$\bigcup_{\mathrm{NH}_2}$$ where n=1 to 2000. Hydrogenating Reagents The intermediate imine that is formed from the reaction between an amine and the aldehyde of the VTM may be reduced by hydrogenating agents known to those having ordinary skill in the art. Suitable hydrogenating agents include, for example, hydrogen with platinum (such as platinum oxide, Adam's catalyst), palladium (such as palladium on charcoal), rhodium, ruthenium, Raney Nickel or other transition metal catalyst, sodium borohydride, lithium aluminum 45 hydride, NaBH₃CN, BH₃, Et₃SiH, AlH₃, disobutylaluminum hydride, and the like. Blends of Functionalized Polyolefins In some embodiments, the functionalized (and optionally
derivitized) polyolefins produced by this invention may be 50 blended with from 0.5 to 99 wt % (typically 1.0 to wt % to 98 wt %, and ideally about 50 wt % to about 98 wt %) of one or more other polymers, including but not limited to, thermoplastic polymer(s) and/or elastomer(s). By thermoplastic polymer(s) is meant a polymer that can 55 be melted by heat and then cooled without appreciable change in properties. Thermoplastic polymers typically include, but are not limited to, polyolefins, polyamides, polyesters, polycarbonates, polysulfones, polyacetals, polylactones, acrylonitrile-butadiene-styrene resins, polyphenylene 60 oxide, polyphenylene sulfide, styrene-acrylonitrile resins, styrene maleic anhydride, polyimides, aromatic polyketones, or mixtures of two or more of the above. Preferred polyolefins include, but are not limited to, polymers comprising one or more linear, branched or cyclic C_2 to C_{40} olefins, preferably 65 polymers comprising propylene copolymerized with one or more C_3 to C_{40} olefins, preferably a C_3 to C_{20} alpha-olefin, 36 more preferably C_3 to C_{10} alpha-olefins. More preferred polyolefins include, but are not limited to, polymers comprising ethylene including but not limited to ethylene copolymerized with a C_3 to C_{40} olefin, preferably a C_3 to C_{20} alpha-olefin, more preferably propylene and/or butene. By elastomers is meant all natural and synthetic rubbers, including those defined in ASTM D1566. Examples of preferred elastomers include, but are not limited to, ethylene propylene rubber, ethylene propylene diene monomer rubber, styrenic block copolymer rubbers (including SI, SIS, SB, SBS, SIBS, and the like, where S=styrene, I=isobutylene, and B=butadiene), butyl rubber, halobutyl rubber, copolymers of isobutylene and para-alkylstyrene, halogenated copolymers of isobutylene and para-alkylstyrene, natural rubber, polyisoprene, copolymers of butadiene with acrylonitrile, polychloroprene, alkyl acrylate rubber, chlorinated isoprene rubber, acrylonitrile chlorinated isoprene rubber, polybutadiene rubber (both cis and trans). In another embodiment, the functionalized (and optionally derivitized) polyolefins produced herein may further be combined with one or more of polybutene, ethylene vinyl acetate, low density polyethylene (density 0.915 to less than 0.935 g/cm³) linear low density polyethylene, ultra low density polyethylene (density 0.86 to less than 0.90 g/cm³), very low density polyethylene (density 0.90 to less than 0.915 g/cm³), medium density polyethylene (density 0.935 to less than 0.945 g/cm³), high density polyethylene (density 0.945 to 0.98 g/cm³), ethylene vinyl acetate, ethylene methyl acrylate, copolymers of acrylic acid, polymethylmethacrylate or any 30 other polymers polymerizable by a high-pressure free radical process, polyvinylchloride, polybutene-1, isotactic polybutene, ABS resins, ethylene-propylene rubber (EPR), vulcanized EPR, EPDM, block copolymer, styrenic block copolymers, polyamides, polycarbonates, PET resins, crosslinked 35 polyethylene, copolymers of ethylene and vinyl alcohol (EVOH), polymers of aromatic monomers such as polystyrene, poly-1 esters, polyacetal, polyvinylidine fluoride, polyethylene glycols and/or polyisobutylene. Preferred polymers include those available from ExxonMobil Chemical Company in Baytown, Tex. under the tradenames EXCEED™ and EXACTTM. Tackifiers may be blended with the functionalized (and optionally derivitized) polyolefins produced herein and/or with blends of the functionalized (and optionally derivitized) polyolefins produced by this inventions (as described above). Examples of useful tackifiers include, but are not limited to, aliphatic hydrocarbon resins, aromatic modified aliphatic hydrocarbon resins, hydrogenated polycyclopentadiene resins, polycyclopentadiene resins, gum rosins, gum rosin esters, wood rosins, wood rosin esters, tall oil rosins, tall oil rosin esters, polyterpenes, aromatic modified polyterpenes, terpene phenolics, aromatic modified hydrogenated polycyclopentadiene resins, hydrogenated aliphatic resin, hydrogenated aliphatic aromatic resins, hydrogenated terpenes and modified terpenes, and hydrogenated rosin esters. In some embodiments the tackifier is hydrogenated. In some embodiments the tackifier has a softening point (Ring and Ball, as measured by ASTM E-28) of 80° C. to 140° C., preferably 100° C. to 130° C. The tackifier, if present, is typically present at about 1 wt % to about 50 wt %, based upon the weight of the blend, more preferably 10 wt % to 40 wt %, even more preferably 20 wt % to 40 wt %. In another embodiment, the functionalized (and optionally derivitized) polyolefins of this invention, and/or blends thereof, further comprise typical additives known in the art such as fillers, cavitating agents, antioxidants, surfactants, adjuvants, plasticizers, block, antiblock, color masterbatches, pigments, dyes, processing aids, UV stabilizers, neutralizers, lubricants, waxes, and/or nucleating agents. The additives may be present in the typically effective amounts well known in the art, such as 0.001 wt % to 10 wt %. Preferred fillers, cavitating agents and/or nucleating agents include titanium 5 dioxide, calcium carbonate, barium sulfate, silica, silicon dioxide, carbon black, sand, glass beads, mineral aggregates, talc, clay and the like. Preferred antioxidants include phenolic antioxidants, such as Irganox 1010, Irganox, 1076 both available from Ciba-Geigy. Preferred oils include paraffinic or 10 naphthenic oils such as Primol 352, or Primol 876 available from ExxonMobil Chemical France, S.A. in Paris, France. More preferred oils include aliphatic naphthenic oils, white oils, or the like. In a particularly preferred embodiment, the functionalized 15 (and optionally derivitized) polyolefins produced herein are combined with polymers (elastomeric and/or thermoplastic) having functional groups such as unsaturated molecules-vinyl bonds, ketones or aldehydes under conditions such that they react. Reaction may be confirmed by an at least 20% 20 (preferably at least 50%, preferably at least 100%) increase in Mw as compared to the Mw of the functionalized polyolefin prior to reaction. Such reaction conditions may be increased heat (for example, above the Tm of the functionalized polyolefin), increased shear (such as from a reactive extruder), 25 presence or absence of solvent. Conditions useful for reaction include temperatures from 150° C. to 240° C. and where the components can be added to a stream comprising polymer and other species via a side arm extruder, gravimetric feeder, or liquids pump. Useful polymers having functional groups 30 that can be reacted with the functionalized polyolefins produced herein include polyesters, polyvinyl acetates, nylons (polyamides), polybutadiene, nitrile rubber, hydroxylated nitrile rubber. In some embodiments, the functionalized (and optionally derivitized) polyolefin of this invention may be 35 blended with up to 99 wt % (preferably up to 25 wt %, preferably up to 20 wt %, preferably up to 15 wt %, preferably up to 10 wt %, preferably up to 5 wt %), based upon the weight of the composition, of one or more additional polymers. Suitable polymers include those described as PM1) to PM 7) in 40 U.S. Pat. No. 8,003,725. ## Applications The functionalized VTMs of this invention (and blends thereof as described above) may be used in any known thermoplastic or elastomer application. Examples include uses in 45 molded parts, films, tapes, sheets, tubing, hose, sheeting, wire and cable coating, adhesives, shoe soles, bumpers, gaskets, bellows, films, fibers, elastic fibers, nonwovens, spun bonds, corrosion protection coatings and sealants. Preferred uses include additives for lubricants and/or fuels. In some embodiments the functionalized vinyl terminated macromonomers produced herein are further functionalized (derivitized), such as described in U.S. Pat. No. 6,022,929; A. Toyota, T. Tsutsui, and N. Kashiwa, Polymer Bulletin 48, pp. 213-219, 2002; J. Am. Chem. Soc., 1990, 112, and WO 2009/55 155472. The functionalized vinyl terminated materials prepared herein may be used in oil additivation, lubricants, fuels and many other applications. Preferred uses include additives for lubricants and or fuels. In particular embodiments herein, the vinyl terminated macromonomers disclosed herein, or functionalized/derivitized analogs thereof, are useful as additives, preferably in a lubricant. The functionalized VTM's and/or derivitized VTM's pro-65 duced herein have uses as lubricating additives which can act as dispersants, viscosity index improvers, or multifunctional 38 viscosity index improvers. Additionally they may be used as disinfectants (functionalized amines) and or wetting agents. Functionalized VTMs and/or derivitized VTMs having uses as dispersants typically have Mn's g/mol) of less than 20,000, preferably less than 10,000 and most preferably less than 8,000 and typically can range from 500 to 10,000 (e.g., 500 to 5,000), preferably from 1,000 to 8,000 (e.g., 1,000 to 5,000) and most preferably from 1,500 to 6,000 (e.g., 1,500 to 3,000). The functionalized VTMs and/or derivitized VTMs described herein having Mn's (g/mol) of greater than 10,000 g/mol, preferably greater than 10,000 to 100,000 g/mol (preferably 20,000 to 60,000 g/mol) are useful for viscosity index improvers for lubricating oil compositions, adhesive additives, antifogging and wetting agents, ink and paint adhesion promoters, coatings, tackifiers and sealants, and the like. In addition, such VTMs may be functionalized and derivitized to make multifunctional viscosity index improvers which also possess dispersant properties. (For more information please see U.S. Pat. No. 6,022,929.) The functionalized VTMs and/or derivitized VTMs described herein may be combined with other additives (such as viscosity index improvers, corrosion inhibitor, oxidation inhibitor,
dispersant, lube oil flow improver, detergents, demulsifiers, rust inhibitors, pour point depressant, antifoaming agents, antiwear agents, seal swellant, friction modifiers, and the like (described for example in U.S. Pat. No. 6,022,929 at columns 60, line 42-column 78, line 54 and the references cited therein) to form compositions for many applications, including but not limited to lube oil additive packages, lube oils, and the like. Compositions containing these additives are typically are blended into a base oil in amounts which are effective to provide their normal attendant function. Representative effective amounts of such additives are illustrated as follows: | Compositions | (Typical)
wt %* | (Preferred)
wt %* | |--------------------------------|--------------------|----------------------| | V.I. Improver | 1-12 | 1-4 | | Corrosion Inhibitor | 0.01-3 | 0.01-1.5 | | Oxidation Inhibitor | 0.01-5 | 0.01-1.5 | | Dispersant | 0.1-10 | 0.1-5 | | Lube Oil Flow Improver | 0.01-2 | 0.01-1.5 | | Detergents and Rust inhibitors | 0.01-6 | 0.01-3 | | Pour Point Depressant | 0.01-1.5 | 0.01-1.5 | | Anti-Foaming Agents | 0.001-0.1 | 0.001-0.01 | | Antiwear Agents | 0.001-5 | 0.001-1.5 | | Seal Swellant | 0.1-8 | 0.1-4 | | Friction Modifiers | 0.01-3 | 0.01-1.5 | | Lubricating Base Oil | Balance | Balance | In the table above, wt %'s are based on active ingredient content of the additive, and/or upon the total weight of any additive-package, or formulation which will be the sum of the A.I. weight of each additive plus the weight of total oil or diluent. When other additives are employed, it may be desirable, although not necessary, to prepare additive concentrates comprising concentrated solutions or dispersions of the subject additives of this invention (in concentrate amounts hereinabove described), together with one or more of said other additives (said concentrate when constituting an additive mixture being referred to herein as an additive-package) whereby several additives can be added simultaneously to the base oil to form the lubricating oil composition. Dissolution of the additive concentrate into the lubricating oil may be facilitated by solvents and by mixing accompanied with mild 39 heating, but this is not essential. The subject functionalized or derivitized VTMs of the present invention can be added to small amounts of base oil or other compatible solvents along with other desirable additives to form additive-packages containing active ingredients in collective amounts of typically from about 2.5% to about 90%, and preferably from about 15% to about 75%, and most preferably from about 25% to about 60% by weight additives in the appropriate proportions with the remainder being base oil. The final formulations may employ typically about $10~{ m wt}^{-10}$ % of the additive-package with the remainder being base oil. In another embodiment, the vinyl terminated polyolefins described herein can be use in any process, blend or product disclosed in WO 2009/155472 or U.S. Pat. No. 6,022,929, which are incorporated by reference herein. In a preferred embodiment, this invention relates to a fuel comprising any VTM produced herein. In a preferred embodiment, this invention relates to a lubricant comprising any VTM produced herein. #### **EXPERIMENTAL** Product Characterization Products were characterized by ¹H NMR and ¹³C NMR as follows: ¹H NMR Unless otherwise stated, 1H NMR data was collected at either 25° C. or 120° C. (for purposes of the claims, 120° C. shall be used) in a 5 mm probe using a spectrometer with a 1H frequency of at least 400 MHz. Data was recorded using a 30 maximum pulse width of 45° and either a 1 or 2 second delay between pulses. Typical NMR solvents such as CDCl₃, CD₂Cl₂, or C_6D_6 were purchased from Cambridge Isotope Laboratories or SigmaAldrich and were used at ambient temperatures in collection of the NMR data. ¹³C NMR Unless otherwise stated, $^{13}\mathrm{C}$ NMR data was collected at 120° C. using a spectrometer with a $^{13}\mathrm{C}$ frequency of at least 100 MHz. A 90 degree pulse, an acquisition time adjusted to give a digital resolution between 0.1 and 0.12 Hz, at least a 2 $_{\odot}$ second pulse acquisition delay time with continuous broadband proton decoupling using swept square wave modulation without gating was employed during the entire acquisition period. The spectra were acquired with time averaging to provide a signal to noise level adequate to measure the signals of interest. Samples were dissolved in tetrachloroethane-d $_{2}$ (TCE) for high temperature measurements. Other solvents such as CDCl $_{3}$, CD $_{2}$ Cl $_{2}$, or C $_{6}$ D $_{6}$ were used at ambient temperatures. All molecular weights are g/mol unless otherwise noted. Weight-average molecular weight (Mw (GPC)), molecular weight distribution (MWD), Mw (GPC)/Mn (GPC) where Mn (GPC) is the number-average molecular weight, and the branching index, g'(vis), are characterized using a High Temperature Size Exclusion Chromatograph (SEC), equipped 55 with a differential refractive index detector (DRI), an online light scattering detector (LS), and a viscometer. Experimental details not described below, including how the detectors are calibrated, are described in: T. Sun, P. Brant, R. R. Chance, and W. W. Graessley, Macromolecules, Volume 34, Number 60 19, pp. 6812-6820 (2001). Solvent for the SEC experiment was prepared by dissolving 6 g of butylated hydroxy toluene as an antioxidant in 4 L of Aldrich reagent grade 1,2,4 trichlorobenzene (TCB). The TCB mixture was then filtered through a 0.7 μm glass prefilter and subsequently through a 0.1 μm Teflon filter. The TCB was then degassed with an online degasser before enter- 40 ing the SEC. Polymer solutions were prepared by placing the dry polymer in a glass container, adding the desired amount of TCB, then heating the mixture at 160° C. with continuous agitation for about 2 hr. All quantities were measured gravimetrically. The TCB densities used to express the polymer concentration in mass/volume units are 1.463 g/mL at 25° C. and 1.324 g/mL at 135° C. The injection concentration ranged from 1.0 to 2.0 mg/mL, with lower concentrations being used for higher molecular weight samples. Prior to running each sample, the DRI detector and the injector were purged. Flow rate in the apparatus was then increased to 0.5 mL/min, and the DRI was allowed to stabilize for 8-9 hr before injecting the first sample. The LS laser was turned on 1 to 1.5 hr before running samples. The concentration, c, at each point in the chromatogram is calculated from the baseline-subtracted DRI signal, I_{DRI} , using the following equation: $c = K_{DRI}I_{DRI}/(dn/dc)$ where K_{DRI} is a constant determined by calibrating the DRI, and do/dc is the same as described below for the LS analysis. Units on parameters throughout this description of the SEC method are such that concentration is expressed in g/cm³, molecular weight is expressed in kg/mol, and intrinsic viscosity is expressed in dL/g. The light scattering detector used was a Wyatt Technology High Temperature mini-DAWN. The polymer molecular weight, M, at each point in the chromatogram is determined by analyzing the LS output using the Zimm model for static light scattering (M. B. Huglin, Light Scattering From Polymer Solutions, Academic Press, 1971): $$[K_o c/\Delta R(\theta,c)] = [1/MP(\theta)] + 2A_2 c$$ where $\Delta R(\theta)$ is the measured excess Rayleigh scattering intensity at scattering angle θ , c is the polymer concentration determined from the DRI analysis, A_2 is the second virial coefficient, $P(\theta)$ is the form factor for a monodisperse random coil (described in the above reference), and K_o is the optical constant for the system: $$K_o = \frac{4\pi^2 n^2 (dn/dc)^2}{\lambda^4 N_A}$$ in which N_A is the Avogadro's number, and dn/dc is the refractive index increment for the system. The refractive index, n=1.500 for TCB at 135° C. and λ =690 nm. In addition, A_2 =0.0015 and dn/dc=0.104 for ethylene polymers, whereas A_2 =0.0006 and dn/dc=0.104 for propylene polymers. For EPDM, the values of A_2 and dn/dc were determined based on the ethylene/propylene composition of the EPDM using a standard calibration procedure, such that dn/dc=0.104-0.0016DM; and A_2 =0.0015-10⁻⁵ EP; where EP is the weight percent of propylene in the EPDM terpolymer and DM is the weight percent of diene (such as ENB) in the EPDM terpolymer. The molecular weight averages were defined by considering the discontinuous nature of the distribution in which the macromolecules exist in discrete fractions i containing N_i molecules of molecular weight M_i . The weight-average molecular weight, M_w , was defined as the sum of the products of the molecular weight M_i of each fraction multiplied by its weight fraction w_i : $$M_{w} = \sum w_{i} M_{i} = (\sum N_{i} M_{i}^{2} / \sum N_{i} M_{i})$$ since the weight fraction w_i is defined as the weight of molecules of molecular weight M_i divided by the total weight of all the molecules present: $$w_i = N_i M_i / \Sigma N_i M_i$$. The number-average molecular weight, M_n , is defined as the sum of the products of the molecular weight M_i of each fraction multiplied by its mole fraction x_i : $$M_n \equiv \sum x_i M_i = \sum N_i M_i / \sum N_i$$ since the mole fraction \mathbf{x}_i is defined as \mathbf{N}_i divided by the total number of molecules $$x_i = N_i / \sum N_i$$ In the SEC, a high temperature Viscotek Corporation viscometer was used, which has four capillaries arranged in a Wheatstone bridge configuration with two pressure transducers. One transducer measures the total pressure drop across the detector, and the other, positioned between the two sides of the bridge, measures a differential pressure. The specific viscosity, η_s , for the solution flowing through the viscometer was calculated from their outputs. The
intrinsic viscosity, $[\eta]$, at each point in the chromatogram was calculated from the following equation: $$\eta_s = c[\eta] + 0.3(c[\eta])^2$$ where c was determined from the DRI output. The branching index (g', also referred to as g'(vis)) was calculated using the output of the SEC-DRI-LS-VIS method as follows. The average intrinsic viscosity, $[\eta]_{avg}$, of the sample is calculated by: $$[\eta]_{avg} = \frac{\sum c_i [\eta]_i}{\sum c_i}$$ where the summations are over the chromatographic slices, i, between the integration limits. The branching index g'(vis) is defined as: $$g' = \frac{[\eta]_{avg}}{kM_v^{\alpha}}$$ where k=0.000579 and α =0.695 for ethylene polymers, k=0.0002288 and α =0.705 for propylene polymers, and k=0.00018 and α =0.7 for butene polymers. In the examples below, weight-average molecular weight (Mw (GPC)), molecular weight distribution (MWD), Mw (GPC)/Mn (GPC) where Mn (GPC) is the number-average molecular weight are characterized using a Size Exclusion Chromatograph (SEC), equipped with a differential refractive index detector (DRI). Tetrahydrofuran (THF) solvent is used for the SEC experiment. The THF was then degassed 55 with an inline degasser. Sample solutions were prepared by placing the sample in a 10 ml glass vial with solvent resistant cap, adding the desired amount of THF, then agitation for about 1 hr. All quantities were measured gravimetrically. The injection concentration is 6 mg/mL. For amine functionalized 60 samples 3 drops of acetic anhydride is added to a 5 ml solution to reduce adsorption effects on the column surface. Prior to running a sample set, the DRI detector and the injector were purged. Flow rate in the apparatus was then increased to 1.0 mL/min, and the DRI was allowed to stabilize for 1 hr. The 65 instrument conditions are listed in table 1. The samples are analyzed using a poly iso-butylene calibration. The molecular weight averages were defined by considering the discontinuous nature of the distribution in which the macromolecules exist in discrete fractions i containing N_i molecules of molecular weight M_i . The weight-average molecular weight, M_w , was defined as the sum of the products of the molecular weight M_i of each fraction multiplied by its weight fraction w_i : $$M_w = \sum w_i M_i = (\sum N_i M_i^2 / \sum N_i M_i)$$ since the weight fraction w_i is defined as the weight of molecules of molecular weight M_i divided by the total weight of all the molecules present: $$w_i = N_i M_i / \Sigma N_i M_i$$. The number-average molecular weight, M_n , is defined as the sum of the products of the molecular weight M_i of each fraction multiplied by its mole fraction x_i : $$M_n \equiv \sum x_i M_i = \sum N_i M_i / \sum N_i$$ since the mole fraction x_i is defined as N_i divided by the total number of molecules $$x_i = N_i / \sum N_i$$. 25 The GPC results for all aldehydes were obtained from high temperature measurements whereas those for hydroaminated products were obtained from low temperature GPC (40° C., THF). | GPC Conditions | | | | | |----------------|------------|-----------------------------------|--|--| | INSTRUMENT# 31 | | Waters Alliance 2690 HPLC | | | | COLUMN | Type: | 3 Mixed Bed type "D" 5µ particles | | | | | Length: | 300 mm | | | | | ID: | 7.5 mm | | | | | Supplier: | Polymer Laboratories | | | | SOLVENT | Type: | 100% tetrahydrofuran un-inhibite | | | | PROGRAM | | (THF) | | | | | Flow Rate: | 1 ml/min. | | | | DETECTOR | A: | Waters 486 tunable UV @ 254 | | | | | | nm. λ | | | | | B: | Waters 2410 Refractive Index | | | | TEMPERATURE | Injector: | Ambient ~23° C. | | | | | Detector: | Ambient ~23° C. | | | | | Column's: | Ambient ~23° C. | | | | INJECTION | | 100 µl | | | | VOLUME | | | | | | SAMPLE | | 0.6 w/v % (6 mg./ml.) | | | | CONCENTRATION | | | | | | SOLVENT | | THF | | | | DILUENT | | | | | | | | | | | ## EXPERIMENTAL Vinyl terminated macromonomers (VTM) (Table 1) were hydroformylated to the corresponding aldehydes (Table 2). All vinyl terminated macromers were prepared by as previously as disclosed in U.S. Pat. No. 8,318,998 and/or U.S. Pat. No. 8,455,597, which are incorporated by reference in its entirety herein. Elemental analysis performed by Galbraith Laboratories. Solvents and NaBH₄ were purchased from Aldrich. Ethylenediamine, tetraethylenepentamine (TEPA), triethylenetetramine (TETA)c and NH₂CH₂CH₂NHCH₂CH₂OH were purchased from Aldrich. Also, in Table 1, the catalyst is J1051-AAD, the syngas is from Praxair; H₂/CO molar ratio 1.1:1.0, and the aPP is a homopolymer. Summary of VTM Hydroformylation Reactions; Catalyst Rh(acac)(CO)₂ (1) + PPh₃; Syngas charge, diluent autogenous + 200 psi (pressure maintained by regulator) 100° C. Temperature; 1 liter autoclave reactor volume | VTM | Туре | MN | Charge,
mL | 1 mg, PPh ₃
mg | Diluent,
mL | Time,
hr | |-----|--|------|---------------|------------------------------|----------------|-------------| | Z | C_3C_6 aPP C_3C_2 aPP C_3C_4 | 575 | 182 | 0.11, 0.77 | hexane, 300 | 23 | | Y | | 982 | 271 | 0.1, 0.7 | hexane, 300 | 8 | | X | | 2627 | 267 | 0.05, 0.36 | hexane, 250 | 8.5 | | W | | 2108 | 297 | 0.054, 0.348 | hexane, 300 | 9.25 | | V | | 1602 | 222 | 0.049, 0.354 | hexane, 200 | 9.3 | nances have been assigned to some atoms of the intermediate products as well as the reduced products. These are based on model synthesis, nmr techniques, and Chem-Draw program assignments. TABLE 2 | Conversion - VTM to aldehyde | | | | | | | | | | | | | |------------------------------|---------------------|---|---|--------------|--|---|---|--------------------------|--|--|--|--| | VTM | Aldehyde
Product | As received, g | Total Product
Yield, g | ¹H NMR
Mn | ¹ H NMR
% Conversion
to aldehyde
as received | ¹ H NMR
Linear to
Branched
Aldehyde | FT-IR peaks
vinyl,
aldehyde,
alcohol | GPC-DRI Mn,
Mw, Mw/Mn | | | | | | Z | A | С ₃ С ₆ Н(СО)Н, 338 | 157 (Estimated
to be 86% of
initial charge) | 709 | 89 | 76/24 | no, yes, no | 76, 526,
6.9 | | | | | | Y | В | аРРН(СО)Н, 366 | 233 (Estimated
to be 86% of
initial charge) | 1180 | 93 | 67/33 | | 752, 1720,
2.29 | | | | | | X | D | C ₃ C ₂ H(CO)H, 231 | 236 | 2184 | 92 | 67/33 | | | | | | | | W | Е | аРРН(CO)Н, 265 | 265 | 2240
1739 | 87 | 69/31 | | 1856, 5311,
2.9 | | | | | | V | F | $C_3C_4H(CO)H$, 185 | 185 | | 81 | 73/27 | | | | | | | This scheme above is the overall chemistry of the reaction of an aldehyde with an ethylene diamine Depending on reaction conditions and stoichiometry, both imines and imidazolidines are formed in the reaction of aldehyde-terminated macromonomers with ethylene diamines Geminal intermediates (π,θ) are formed with lower amounts of ethylene diamines Imines (μ,θ) are produced in higher amounts with higher reaction temperatures. Analysis of reaction mixtures of these intermediates by 65 NMR reveals complex spectra due to the aliphatic portion of the aldehyde-terminated products. Some characteristic reso- -continued $$(1.0) C_3C_6 \sim CH = N \qquad N = C \sim C_3C_6$$ $$\chi \qquad \qquad \qquad \qquad NaBH_4 \qquad \qquad NHF/MeOH$$ $$C_3C_6 \sim CH_2 - NH \qquad NH_2 \qquad ^+ C_3C_6 \sim CH_2 - NH \qquad NH - CH_2 \sim C_3C_6$$ $$\delta \qquad \qquad \qquad \epsilon$$ Example 1 #### Synthesis of δ and ϵ Ethylene diamine, $NH_2CH_2CH_2NH_2$ (1.0 g, 16.64 mmol) was added to a round bottom with stir bar, followed by 40 ml of C_6H_6 and aldehyde A, (2.1 g, 3.23 mmol). Cloudiness, most likely due to H_2O , was observed immediately. The reaction mixture was heated to reflux with a dean stark trap and allowed to proceed for 3 hours. An aliquot analyzed by 1H NMR indicated all aldehyde had been consumed. 1H NMR (500 MHz, C_6D_6) δ ppm; 7.45 (CH=N, d, 1.0 H), 3.61 (=N-CH₂CH₂-N=, s, 4H), 3.52 (-CH imidazolidine, m, 0.5 H), 3.48 (m), 3.25 (s, 0.5 H), 2.77 (s, 0.5 H), 2.65 to 2.5 (m, 5.3 H), 2.0 to 0.5 (m, 233.5H). The volatiles were removed and replaced with 40 ml of THF and 20 ml of MeOH. NaBH $_4$ (180 mg) was added in portions to the reaction mixture. The reaction was quenched with 40 ml of H $_2$ O after 14 hours and extracted with 40 ml of hexane. The organic layer was reduced to a clear liquid prod- uct (2.1 g). 1H NMR (500 MHz, $C_6D_6)\,\delta$ ppm; 2.8 to 2.3 (m, 4.4H), 2.0 to 0.5 (86.2 H). The proton NMR spectrum is shown in FIG. 1. #### Example 2 ## Synthesis of C₃C₆-TETA-C₃C₆ C₃C₆-aldehyde A was dissolved in benzene (80 ml) and reacted with triethylenetetramine (1.05 g). An additional 5.0 10 g of C₃C₆-aldehyde A and the reaction was heated to reflux for 2 hrs. An aliquot indicated only a small amount of aldehyde remained. 1 H NMR (500 MHz, $C_{6}D_{6}$) δ ppm; 9.4 (CO— H, s, 0.1 H), 7.85 (CH=N, s, 0.1 H), 7.56 (CH=N, apparent d, 1.0H), 4.2 to 3.4 (m, 3.9 H), 3.4 to 2 (m, 12.4H), 2.0 to 0.5 (m, 305.4H). The reaction mixture was cooled to 25° C. and THF (30 ml) and MeOH (30 ml) added. NaBH₄ (490 mg) was added in portions over 30 minutes and the reaction mixture allowed to stir for 12 hrs. The crude reaction was washed gently with H₂O (2×20 ml) with a resulting emulsion. Et₂O ²⁰ (50 ml) was added to help break emulsion. The organic layer was separated, dried with MgSO₄ and reduced to an oil (5.2 g). 1 H NMR (500 MHz, $C_{6}D_{6}$) δ ppm; 3.0 to 2.0 (m, 16 H), 2.0 to 0.5 (m, 279.6 H). Elemental: 81.7% C, 14.4% H, 2.7% N. GPC (THF, 40° C., DRI); Mw=2239, Mn=1291, PD=1.73. 25 #### Example 3 ## Synthesis of C₃-TETA-C₃ 33.4 g of C₃-aldehyde B was dissolved in THF (80 ml) and was reacted with triethylenetetramine (TETA, 2.2 g) and
heated to reflux for 2 hrs. An aliquot analyzed by H NMR indicated all aldehyde had reacted. ¹H NMR (500 MHz, C_6D_6) δ ppm; 7.49 (s), 7.40 (s) (integration of both=2H), 3.46 35 (s, obscured by THF resonance), 3.27 to 1.94 (multiple peaks, 75.6 H), 1.94 to 0.63 (m, 1614.2 H). The yellow reaction was cooled to 25° C. and MeOH (20 ml) was added. NaBH₄ (1.3 g) was added in portions over a 40 hour. Two layers were evident and an aliquot of the top layer showed that the reaction was complete. The reaction mixture was transferred into a separatory funnel, hexane (60 ml) added, and the bottom layer removed. The top layer was gently washed with H₂O (3×30 ml) and the aqueous layers 45 added to the original bottom layer. The original bottom layer and aqueous washings were extracted with hexane (60 ml) and this was added to the original top layer. The hexane solubles were reduced to an oil and dried in a vacuum oven at 70° C. for 12 hrs. The product obtained was an oil (32.5 g). 1 H 50 NMR (500 MHz, $C_2D_2Cl_4$) δ ppm; 7.6 (br s, 3.3 H), 3.5 to 2.37 (m, 13.1 H), 2.3 to 0.5 (m, 315 H). GPC (THF, 40° C., DRI); Mw=3243, Mn=1412, PD=2.30. Elemental; 82.7% C, 14.5% H, 2.3% N. The proton NMR is shown in FIG. 2. ## Example 4 #### Synthesis of C₃-TETA-C₃ C₃-aldehyde E (46.8 g) was dissolved in THF (100 ml). 60 TETA (1.5 g) was added and the reaction mixture was heated to reflux for 3 hrs. ¹H NMR (500 MHz, CDCl₃) δ ppm; 7.7 to 7.4 (m, 1 H), 3.45 to 2.55 (13.2 H), 1.75 to 0.5 (m, 864.2 H). The reaction mixture was cooled and MeOH (20 ml) was added. NaBH₄ (0.9 g) was added in portions over 30 minutes 65 and the reaction mixture was stirred for an additional 12 hrs. The mixture was transferred to a separatory funnel and the 46 bottom layer removed and discarded. The top layer containing the product was diluted with hexane (100 ml), washed gently with H₂O (20 ml) and the aqueous layer was discarded. The hexane layer was transferred to a glass container and volatiles were removed. The product was dried in a vacuum oven at 80° C. for 12 hrs (27.2 g). ¹H NMR (500 MHz, CDCl₂) δ ppm; 3.0 to 2.25 (m, 14 H), 1.75 to 0.5 (m, 899 H). Elemental; 83.3% C, 14.2% H, 1.0% N, 371 ppm B, 154 ppm #### Example 5 ## Synthesis of C₃C₆-TETA-C₃C₆ C₃C₆-aldehyde A (6.9 g) was diluted with benzene (5 ml) and reacted with TETA (0.72 g). The reaction mixture was heated to reflux for 1 hr, cooled and analyzed by ¹H NMR. ¹H NMR (500 MHz, C_6D_6) δ ppm; 7.6 to 7.4 (m, 0.18 H), 3.9 to 2.0 (m, 14 H), 2.0 to 0.5 (m, 157 H). ¹³C NMR (125 MHz, C_6D_6) δ ppm; 179.7 (CH=N, 0.09C), 169.0 (CH=N, 0.10C), 164.5 (CH=N, 0.05C), Additional benzene (10 ml) was added followed by addi-³⁰ tion of portions of NaBH₄ (100 mg). The reaction was stirred for 1 hr, filtered over celite and reduced to give a hazy product (5.4 g). ¹H NMR $(500 \text{ MHz}, C_6D_6) \delta \text{ ppm}$; 3.2 to 2.0 (m, 16 H), 2.0 to 0.5 (m, 178.7 H). #### Example 6 Synthesis of $$C_3C_6$$ —NH— C_2H_4 —NH— C_2H_4 —OH) C₃C₆-aldehyde A (5.3 g) was dissolved in benzene (20 ml) minute interval. The reaction was stirred for an additional 40 and reacted with NH₂—CH₂CH₂—NH—CH₂CH₂—OH (0.85 g) at ambient temperature for 3 hours. An aliquot analyzed by H NMR indicated all aldehyde had been consumed. ¹H NMR (500 MHz, C_6D_6) δ ppm; 7.6 to 7.4 (m, 0.1 H), 4.3 to 2.0 (m, 9 H), 2.0 to 0.5 (m, 80.6 H). ¹³C NMR (125 MHz, C_6D_6) δ ppm; 180.4 (0.19C), 170.1 (0.10C), 165.8 (0.12C), 86.0 (0.14C), 81.4 (1.0C). NaBH₄ (100 mg) was added in portions and the reaction mixture was stirred for 12 hrs. The reaction mixture was filtered through celite and reduced to a hazy oil (4.5 g). ¹H NMR $(500 \text{ MHz}, C_6D_6) \delta \text{ ppm}$; 4.2 to 3.25(m, 2 H), 3.25 to 2.0 (m, 6.2 H), 2.0 to 0.5 (m, 94.5 H). ¹³C NMR (125 MHz, C₆D₆) δ ppm; 61.1, 52.1, 50.4, 49.7, 49.5. #### Example 7 ## Synthesis of C₃C₆-TETA-C₃C₆ C₃C₆-aldehyde A (12.0 g) was dissolved in THF (50 ml) and reacted with TETA (1.2 g). The reaction was heated to reflux for a total of 1.5 hrs. An aliquot by H NMR indicated that all the aldehyde had reacted. The reaction was cooled and MeOH (40 ml) was added followed by small portions of $NaBH_4(1.3 g)$ over a 30 minute time period. The reaction was allowed to stir for an additional 12 hrs. Two layers were evident. The reduced amine product was found to be in the top layer which was separated, washed with a small amount of H₂O (50 ml) and dried with MgSO₄. Immediately the MgSO₄ was dispersed into the product layer and could not be precipi- tated or removed by filtration. An aliquot before drying was analyzed, $^1{\rm H}$ NMR (500 MHz, ${\rm C_6D_6}$) δ ppm; 3.2 to 2.0 (m, 16 H), 2.0 to 0.5 (m, 160.3 H). All documents described herein are incorporated by reference herein, including any priority documents and/or testing 5 procedures to the extent they are not inconsistent with this text, provided however that any priority document not named in the initially filed application or filing documents is NOT incorporated by reference herein. As is apparent from the foregoing general description and the specific embodiments, 10 while forms of the invention have been illustrated and described, various modifications can be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited thereby. Likewise, the term "comprising" is considered synonymous with 15 the term "including" for purposes of Australian law. Likewise whenever a composition, an element or a group of elements is preceded with the transitional phrase "comprising", it is understood that we also contemplate the same composition or group of elements with transitional phrases "consisting 20 essentially of," "consisting of", "selected from the group of consisting of," or "is" preceding the recitation of the composition, element, or elements and vice versa. Thus, the term "comprising" encompasses the terms "consisting essentially of," "is," and "consisting of" and anyplace "comprising" is 25 used "consisting essentially of," "is," or consisting of may be substituted therefor. The invention claimed is: 1. A polyolefin composition comprising one or more of the following formulae: $$\begin{array}{ccccc} NR_1 & HC =\!\!\!=\! NR_1 \\ \parallel & \parallel & \parallel \\ PO -\!\!\!\!=\! CH_2 -\!\!\!\!=\! CH & or & PO -\!\!\!\!=\! CH -\!\!\!\!=\! CH_3 \end{array}$$ wherein the PO is the residual portion of a vinyl terminated macromonomer (VTM) having had a terminal unsaturated carbon of an allylic chain and a vinyl carbon adjacent to the terminal unsaturated carbon; R₁ is a hydrogen atom, an aryl group, or an alkyl group, wherein the aryl group or alkyl group can include one or more heteroatoms, an alkyl or aryl amino group, a polyalkylamino group; wherein the VTM is one or more of: - (i) a vinyl terminated polymer having at least 5% allyl chain ends: - (ii) a vinyl terminated polymer having an Mn of at least 160 g/mol (measured by ¹H NMR) comprising of one or more C₄ to C₄₀ higher olefin derived units, where the ⁵⁰ higher olefin polymer comprises substantially no propylene derived units; and wherein the higher olefin polymer has at least 5% allyl chain ends; - (iii) a copolymer having an Mn of 300 g/mol or more (measured by ¹H NMR) comprising (a) from 20 mol % 55 to 99.9 mol % of at least one C5 to C₄₀ higher olefin derived units, and (b) from 0.1 mol % to 80 mol % of propylene derived units, wherein the higher olefin copolymer has at least 40% allyl chain ends; - (iv) a copolymer having an Mn of 300 g/mol or more 60 (measured by ¹H NMR), and comprises (a) from 80 mol % to 99.9 mol % of at least one C₄ olefin derived unit, (b) from 0.1 mol % to 20 mol % of propylene derived units; and wherein the vinyl terminated macromonomer has at least 40% allyl chain ends relative to total unsaturation; 65 - (v) a co-oligomer having an Mn of 300 g/mol to 30,000 g/mol (measured by ¹H NMR) comprising 10 mol % to 90 mol % propylene derived units and 10 mol % to 90 mol % of ethylene derived units, wherein the co-oligomer has at least X % allyl chain ends (relative to total unsaturations), where: 1) X=(-0.94*(mol % ethylene incorporated)+100), when 10 mol % to 60 mol % ethylene derived units are present in the co-oligomer, 2) X=45, when greater than 60 mol % and less than 70 mol % ethylene derived units are present in the co-oligomer, and 3) X=(1.83*(mol % ethylene incorporated)-83), when 70 mol % to 90 mol % ethylene derived units are present in the co-oligomer; - (vi) a propylene co-oligomer, comprising more than 90 mol % propylene derived units and less than 10 mol % ethylene derived units; wherein the co-oligomer has: at least 93% allyl chain ends, a number average molecular weight (Mn) of 500 g/mol to 20,000 g/mol, an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.35:1.0, less than 100 ppm aluminum, and/or less than 250 regio defects per 10,000 monomer units; - (vii) a propylene co-oligomer, comprising: at least 50 mol % propylene derived units and from 10 mol % to 50 mol % ethylene derived units, wherein the co-oligomer has: at least 90% allyl chain ends, an Mn of 150 g/mol to 20,000 g/mol, and an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.2:1.0, wherein monomers having four or more carbon atoms are present at from 0 mol % to 3 mol %; - (viii) a propylene co-oligomer, comprising: at least 50 mol % propylene derived units, from 0.1 mol % to 45 mol % ethylene derived units, and from 0.1 mol % to 5 mol % C₄ to C₁₂ olefin derived units, wherein the co-oligomer has: at least 90% allyl chain ends, an Mn of 150 g/mol to 10,000 g/mol, and an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.35:1.0; - (ix) a propylene co-oligomer, comprising: at least 50 mol % propylene derived units, from 0.1 mol % to 45 mol % ethylene derived units, and from 0.1 mol % to 5 mol % diene derived units, wherein the
co-oligomer has: at least 90% allyl chain ends, an Mn of 150 g/mol to 10,000 g/mol, and an isobutyl chain end to allylic vinyl group ratio of 0.7:1 to 1.35:1.0; - (x) a homo-oligomer, comprising propylene, wherein the homo-oligomer has: at least 93% allyl chain ends, an Mn of 500 g/mol to 70,000 g/mol, an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.2:1.0, and less than 1400 ppm aluminum; - (xi) vinyl terminated polyethylene having: (a) at least 60% allyl chain ends; (b) a molecular weight distribution of less than or equal to 4.0; (c) a g'(vis) of greater than 0.95; and (d) an Mn (¹H NMR) of at least 20,000 g/mol; and - (xii) vinyl terminated polyethylene having: (a) at least 50% allyl chain ends; (b) a molecular weight distribution of less than or equal to 4.0; (c) a g'(vis) of 0.95 or less; (d) an Mn (¹H NMR) of at least 7,000 g/mol; and (e) a Mn (GPC)/Mn (¹H NMR) in the range of from 0.8 to 1.2. - 2. A polyolefin composition comprising one or more of the following formulae: wherein the PO is the residual portion of a vinyl terminated macromonomer (VTM) having had a terminal unsaturated carbon of an allylic chain and a vinyl carbon adjacent to the terminal unsaturated carbon; - R₁ is a hydrogen atom, an aryl group, or an alkyl group, wherein the aryl group or alkyl group can include one or more heteroatoms, an alkyl or aryl amino group, a polyalkylamino group; - wherein the VTM is one or more of: - (i) a vinyl terminated polymer having at least 5% allyl chain ends: - (ii) a vinyl terminated polymer having an Mn of at least 160 g/mol (measured by ¹H NMR) comprising of one or more C₄ to C₄₀ higher olefin derived units, where the higher olefin polymer comprises substantially no propylene derived units; and wherein the higher olefin polymer has at least 5% allyl chain ends; - (iii) a copolymer having an Mn of 300 g/mol or more (measured by ¹H NMR) comprising (a) from 20 mol % to 99.9 mol % of at least one C5 to C₄₀ higher olefin derived units, and (b) from 0.1 mol % to 80 mol % of propylene derived units, wherein the higher olefin copolymer has at least 40% allyl chain ends; - (iv) a copolymer having an Mn of 300 g/mol or more (measured by 1 H NMR), and comprises (a) from 80 mol % to 99.9 mol % of at least one C_4 olefin derived unit, (b) from 0.1 mol % to 20 mol % of propylene derived units; and wherein the vinyl terminated macromonomer has at 25 least 40% allyl chain ends relative to total unsaturation; - (v) a co-oligomer having an Mn of 300 g/mol to 30,000 g/mol (measured by ¹H NMR) comprising 10 mol % to 90 mol % propylene derived units and 10 mol % to 90 mol % of ethylene derived units, wherein the co-oligomer has at least X % allyl chain ends (relative to total unsaturations), where: 1) X=(-0.94*(mol % ethylene incorporated)+100), when 10 mol % to 60 mol % ethylene derived units are present in the co-oligomer, 2) X=45, when greater than 60 mol % and less than 70 mol % ethylene derived units are present in the co-oligomer, and 3) X=(1.83* (mol % ethylene incorporated) -83), when 70 mol % to 90 mol % ethylene derived units are present in the co-oligomer; - (vi) a propylene co-oligomer, comprising more than 90 mol % propylene derived units and less than 10 mol % ethylene derived units; wherein the co-oligomer has: at least 93% allyl chain ends, a number average molecular weight (Mn) of 500 g/mol to 20,000 g/mol, an isobutyl 45 chain end to allylic vinyl group ratio of 0.8:1 to 1.35:1.0, less than 100 ppm aluminum, and/or less than 250 regio defects per 10,000 monomer units; - (vii) a propylene co-oligomer, comprising: at least 50 mol % propylene derived units and from 10 mol % to 50 mol 50 % ethylene derived units, wherein the co-oligomer has: at least 90 % allyl chain ends, an Mn of 150 g/mol to 20,000 g/mol, and an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.2:1.0, wherein monomers having four or more carbon atoms are present at from 0 mol 55 % to 3 mol %: - (viii) a propylene co-oligomer, comprising: at least 50 mol % propylene derived units, from 0.1 mol % to 45 mol % ethylene derived units, and from 0.1 mol % to 5 mol % C₄ to C₁₂ olefin derived units, wherein the co-oligomer 60 has: at least 90 % allyl chain ends, an Mn of 150 g/mol to 10,000 g/mol, and an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.35:1.0; - (ix) a propylene co-oligomer, comprising: at least 50 mol % propylene derived units, from 0.1 mol % to 45 mol % ethylene derived units, and from 0.1 mol % to 5 mol % diene derived units, wherein the co-oligomer has: at 50 least 90 %allyl chain ends, an Mn of 150 g/mol to 10,000 g/mol, and an isobutyl chain end to allylic vinyl group ratio of 0.7:1 to 1.35:1.0; - (x) a homo-oligomer, comprising propylene, wherein the homo-oligomer has: at least 93 % allyl chain ends, an Mn of 500 g/mol to 70,000 g/mol, an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.2:1.0, and less than 1400 ppm aluminum; - (xi) vinyl terminated polyethylene having: (a) at least 60% allyl chain ends; (b) a molecular weight distribution of less than or equal to 4.0; (c) a g'(vis) of greater than 0.95; and (d) an Mn (¹H NMR) of at least 20,000 g/mol; and - (xii) vinyl terminated polyethylene having: (a) at least 50% allyl chain ends; (b) a molecular weight distribution of less than or equal to 4.0; (c) a g'(vis) of 0.95 or less; (d) an Mn (¹H NMR) of at least 7,000 g/mol; and (e) a Mn (GPC)/Mn (¹H NMR) in the range of from 0.8 to 1.2. - 3. A polyolefin composition comprising one or more of the 20 following formulae: - wherein the P₁O and PO₂, each independently, are residual portions of vinyl terminated macromonomer (VTMs) having had a terminal unsaturated carbon of an allylic chain and a vinyl carbon adjacent to the terminal unsaturated carbon; - R₁ and R₂, each independently, are one of a hydrogen atom, an aryl group, or an alkyl group, wherein the aryl group or alkyl group can include one or more heteroatoms, an alkyl or aryl amino group, a polyalkylamino group or —CH₂CH₂P₁O, —CH₂CH₂PO₂, —CH₂—CH—(CH₃)—P₁O, or —CH₂—CH—(CH₃)—PO₃; - X is an alkylidene group or an arylene group, wherein one or more carbon atoms can include one or more heteroatoms: - wherein each VTM is one or more of: - (i) a vinyl terminated polymer having at least 5% allyl chain ends; - (ii) a vinyl terminated polymer having an Mn of at least 160 g/mol (measured by ¹H NMR) comprising of one or more C₄ to C₄₀ higher olefin derived units, where the higher olefin polymer comprises substantially no propylene derived units; and wherein the higher olefin polymer has at least 5% allyl chain ends; - (iii) a copolymer having an Mn of 300 g/mol or more (measured by ¹H NMR) comprising (a) - from 20 mol % to 99.9 mol % of at least one C5 to C₄₀ higher olefin derived units, and (b) from 0.1 mol % to 80 mol % of propylene derived units, wherein the higher olefin copolymer has at least 40% allyl chain - (iv) a copolymer having an Mn of 300 g/mol or more (measured by 1 H NMR), and comprises (a) from 80 mol % to 99.9 mol % of at least one C_4 olefin derived unit, (b) from 0.1 mol % to 20 mol % of propylene derived units; and wherein the vinyl terminated macromonomer has at least 40% allyl chain ends relative to total unsaturation; (v) a co-oligomer having an Mn of 300 g/mol to 30,000 g/mol (measured by ¹H NMR) comprising 10 mol % to 90 mol % propylene derived units and 10 mol % to 90 mol % of ethylene derived units, wherein the co-oligomer has at least X % allyl chain ends (relative to total unsaturations), where: 1) X=(-0.94*(mol % ethylene incorporated)+100), when 10 mol % to 60 mol % ethylene derived units are present in the co-oligomer, 2) X=45, when greater than 60 mol % and less than 70 mol % ethylene derived units are present in the co-oligomer, and 3) X=(1.83* (mol % ethylene incorporated) -83), when 70 mol % to 90 mol % ethylene derived units are present in the co-oligomer; (vi) a propylene co-oligomer, comprising more than 90 mol % propylene derived units and less than 10 mol % ethylene derived units; wherein the co-oligomer has: at least 93 % allyl chain ends, a number average molecular weight (Mn) of 500 g/mol to 20,000 g/mol, an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.35:1.0, less than 100 ppm aluminum, and/or less than 250 regio defects per 10,000 monomer units; (vii) a propylene co-oligomer, comprising: at least 50 mol % propylene derived units and from 10 mol % to 50 mol 25 % ethylene derived units, wherein the co-oligomer has: at least 90 %allyl chain ends, an Mn of 150 g/mol to 20,000 g/mol, and an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.2:1.0, wherein monomers having four or more carbon atoms are present at from 0 mol 30 % to 3 mol %; (viii) a propylene co-oligomer, comprising: at least 50 mol % propylene derived units, from 0.1 mol % to 45 mol % ethylene derived units, and from 0.1 mol % to 5 mol % C₄ to C₁₂ olefin derived units, wherein the co-oligomer has: at least 90 % allyl chain ends, an Mn of 150 g/mol to 10,000 g/mol, and an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.35:1.0; (ix) a propylene co-oligomer, comprising: at least 50 mol % propylene derived units, from 0.1 mol % to 45 mol % ethylene derived units, and from 0.1 mol % to 5 mol % diene derived units, wherein the co-oligomer has: at least 90 %allyl chain ends, an Mn of 150 g/mol to 10,000 g/mol, and an isobutyl chain end to allylic vinyl group ratio of 0.7:1 to 1.35:1.0; (x) a homo-oligomer, comprising propylene, wherein the homo-oligomer has: at least 93 % allyl chain ends, an Mn of 500 g/mol to 70,000 g/mol, an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.2:1.0, and less than 1400 ppm aluminum; (xi) vinyl terminated polyethylene having: (a) at least 60% allyl chain ends; (b) a molecular weight distribution of less than or equal to 4.0; (c) a g'(vis) of greater than 0.95; and (d) an Mn (¹H NMR) of at least 20,000 g/mol; and (xii) vinyl
terminated polyethylene having: (a) at least 50% allyl chain ends; (b) a molecular weight distribution of less than or equal to 4.0; (c) a g'(vis) of 0.95 or less; (d) an Mn (¹H NMR) of at least 7,000 g/mol; and (e) a Mn (GPC)/Mn (¹H NMR) in the range of from 0.8 to 1.2. 4. The polyolefin composition of claim 3, wherein X is: wherein n is from 1 to about 12, m is from 1 to about 12, x is from 1 to about 2000 and R₃ is a hydrogen atom, an aryl group, or an alkyl group, wherein the aryl group or alkyl group can include one or more heteroatoms or —CH₂CH₂P₁O, —CH₂CH₂PO₂, —CH₂—CH—(CH₃)—P₁O, or —CH₂—CH—(CH₃)—PO₂. 5. The polyolefin composition of claim 1, wherein the composition is amorphous. 6. The composition of claim 1, wherein the VTM is a vinyl terminated polymer having at least 30% allyl chain ends and an Mn of at least 10,000 g/mol. 7. The composition of claim 2, wherein the VTM is a vinyl terminated polymer having at least 30% allyl chain ends and an Mn of at least 10,000 g/mol. **8**. The composition of claim **3**, wherein the VTM is a vinyl terminated polymer having at least 30% allyl chain ends and an Mn of at least 10,000 g/mol. 9. The composition of claim 1, wherein the polyolefin composition is converted to a hydrohalide salt. $1\hat{0}$. The composition of claim 2, wherein the polyolefin composition is converted to a hydrohalide salt. 11. The composition of claim 3, wherein the polyolefin composition is converted to a hydrohalide salt. 12. The composition of claim 4, wherein the polyolefin composition is converted to a hydrohalide salt. * * * * *